

Problem J. Ternary String Counting

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

Chiaki studies ternary strings s of lentgh n. A ternary string is a string consisting of characters "0", "1", and "2".

Chiaki has made m restrictions, and the *i*-th restriction is: the number of distinct characters of the substring of s from the l_i -th position to the r_i -th position (both inclusive) is exactly x_i .

Chiaki would like to know the number of strings which meet the m restrictions. As the number may be very large, you are only asked to calculate it modulo $10^9 + 7$.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains two integers n and m $(1 \le n \le 5000, 0 \le m \le 10^6)$: the length of the string and the number of restrictions.

Each of the next *m* lines contains three integers, l_i , r_i , and x_i $(1 \le l_i \le r_i \le n, 1 \le x_i \le 3)$.

It is guaranteed that the sum of n over all test cases does not exceed 5000, and the sum of m over all test cases does not exceed 10^6 .

Output

For each test case, output an integer denoting the number of such strings modulo $10^9 + 7$.

Example

standard input	standard output
4	3
1 0	9
2 0	27
3 0	18
5 2	
1 3 3	
4 5 1	

Note

In the fourth sample, all possible strings are: 21000, 12000, 20100, 02100, 10200, 01200, 21011, 12011, 20111, 02111, 01211, 01211, 21022, 12022, 20122, 02122, 10222, 01222.