Problem J. Ternary String Counting

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 mebibytes

Chiaki studies ternary strings s of lentgh n. A ternary string is a string consisting of characters " 0 ", " 1 ", and " 2 ".

Chiaki has made m restrictions, and the i-th restriction is: the number of distinct characters of the substring of s from the l_{i}-th position to the r_{i}-th position (both inclusive) is exactly x_{i}.
Chiaki would like to know the number of strings which meet the m restrictions. As the number may be very large, you are only asked to calculate it modulo $10^{9}+7$.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains two integers n and $m\left(1 \leq n \leq 5000,0 \leq m \leq 10^{6}\right)$: the length of the string and the number of restrictions.
Each of the next m lines contains three integers, l_{i}, r_{i}, and $x_{i}\left(1 \leq l_{i} \leq r_{i} \leq n, 1 \leq x_{i} \leq 3\right)$.
It is guaranteed that the sum of n over all test cases does not exceed 5000 , and the sum of m over all test cases does not exceed 10^{6}.

Output

For each test case, output an integer denoting the number of such strings modulo $10^{9}+7$.

Example

	standard input		standard output
4		3	
1	0	9	
2	0	27	
3	0	18	
5	2		
1	3	3	
4	5	1	

Note

In the fourth sample, all possible strings are: 21000, 12000, 20100, 02100, 10200, 01200, 21011, 12011, 20111, 02111, 10211, 01211, 21022, 12022, 20122, 02122, 10222, 01222.

