

Amusement Park (Solution)

Amusement Park (Solution)

We consider the graph whose vertices are the attractions in JOIOI park, and edges are the paths. Since this graph is connected, we can take a spanning tree. Hence it is enough to solve the task if the graph is a tree.

Let us consider the following strategy to tell the integer *X*:

- We put an integer between 0 and 59, inclusive, to each vertex. The way to do it should be the same for JOI-kun and IOI-chan.
- To each vertex, JOI-kun writes the value of a bit of X. The position of the bit is the integer of that vertex.
- For each integer between 0 and 59, inclusive, IOI-chan visits a vertex corresponding to it. Then she can recover the value of *X*.

By the following method, we can put an integer between 0 and 59, inclusive, to each vertex so that the following condition is satisfied:

for each vertex, there is a subtree containing it such that the subtree also contains exactly one vertex corresponding to each integer between 0 and 59, inclusive.

The method is as follows:

- 1. To any vertex r, we can assign a subtree T_0 of size 60 containing it. For example, this can be achieved by the depth-first search from the vertex r.
- 2. To each of the vertices of T_0 , we put an integer between 0 and 59, inclusive. Different vertices of T_0 should have different integers. Moreover, to each of these vertices, we assign the subtree T_0 .
- 3. Assume that u, v are adjacent vertices such that a subtree T is assigned to u, and v is not contained in T. If we did not yet put an integer to v, we can put an integer and assign a subtree to v by the following way:
 - Take a leaf w of T different from u.
 - Let T' be the subtree obtained from T by removing w and appending v.
 - Put an integer of w to v. Assign the subtree T' to v.
- 4. Repeat the procedure 3 until we put an integer to every vertex.

By the above method, we also assign a required subtree for each vertex.

IOI-chan performs the depth-first search for this subtree. She can visit all vertices of the subtree by at most 2(|T|-1) = 118 moves.

Therefore, we can read all of the 0–59h bits of X. We can recover X successfully, and get full score.