Rail

Solution

Way : Ad Hoc

Query complexity: 3(N-1)

Time complexity : O(N log N)

** This problem can be solved by the following steps :

First, we know that station 0 is C type, and its location. We can query all the
other stations’ distances from station 0, we call this : dis[0] [i]

Second, we sort all the dis[0] [i], and obviously, the station x with the shortest
distance dis[0] [x] must be the first D type location after station 0.

Third, we process each station one by one according to their shortest distance
with station 0 (that is, the order obtained in second step). For each station
processed, we determine its type and location immediately as follows:

3.1 First, we maintain the information (location,id) of the leftmost C type
and the rightmost D type as the algorithm proceeds.

3.2 To process the current station k, we use two queries, query(k,leftmost
C type) as dis[k] [L], query(k, rightmost D type) as dis[k] [R]. And we
also have dis[0] [k]. By some observations, we know that either dis[k] [L] or
dis[k] [R] is achieved with a ‘direct’ route (without moving forth and back).

For example, we have only 4 cases to consider :

a. dis[k][L] is a direct route

C D)
L k R

b. dis[k][L] is a direct route

())
L R k

c. dis[k][R] is a direct route

¢)
k L R

d. dis[k][R] is a direct route

¢ C)
L k R

By careful analysis (some if/else conditions), we can get the answer. Sometimes,
we may need extra information to resolve the four cases, where we can check
with dis[0] [k].

Take case (a) for example :

a. dis[k][L] is a direct route

C D)
L k R

the location of k might be L + dis[k] [L], Then use this location, we need to
check if dis[k] [R] is reasonable or not.

a.l

cC)y
Lpk R

There might be some p(type C) between L and k, So the dis[k][R] is
dis[p] [R1+dis[p] [k], we need to check whether p exists or not. If p doesn’t
exist, then case (a) might be wrong, then try cases (b),(c), and (d) until we find
the answer.

	Rail
	Solution

