

Problem B. Best Meeting Places

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 mebibytes

A tree with N vertices is given. Vertices are numbered sequentially from 1 to N. The *i*-th edge connects vertices A_i and B_i , and has weight C_i , for $1 \le i \le N - 1$.

The *teleport distance* between two vertices of the tree is the maximum weight of the edge on the shortest path connecting them. The teleport distance between a vertex and itself is defined as 0.

People living on the tree want to hold N meetings. The *i*-th meeting is attended by people living in the vertices numbered from 1 to *i*. This year, because of the spread of coronavirus, the meeting participants will arrive at X selected locations, and then connect via Internet from these locations.

More formally, for each meeting, we will choose X pairwise distinct vertices v_1, v_2, \ldots, v_X . Once the vertices are determined, each person will move to one of the vertices v_1, \ldots, v_X with the minimum teleport distance to it. Let us define the *meeting cost* for the given X and i as the maximum of teleport distances for meeting participants. We will select the vertices v_1, \ldots, v_X in such a way that the meeting cost is minimal possible.

The value of X depends on the coronavirus situation, and may vary from 1 to K. To prepare for the meeting in advance, write a program that, for each of the N meetings, finds the sum of the meeting costs for all possible values of X from 1 to K, inclusive.

Input

The first line of input contains two integers N and K: the number of vertices and the upper limit for X, respectively $(1 \le K \le N \le 3 \cdot 10^5)$.

The following N-1 lines describe the tree. Each of these lines contains three integers, A_i , B_i , and C_i , telling that there is an edge between vertices A_i and B_i with weight C_i $(1 \le A_i, B_i, C_i \le N)$. It is guaranteed that the resulting graph is a tree.

Output

Print N lines. On line i, print the sum of meeting costs of i-th meeting for all X from 1 to K, inclusive.

Examples

standard input	standard output
10 4	0
512	4
1 6 4	13
621	21
289	23
835	23
3 4 8	30
4 10 9	31
10 9 8	33
977	34
8 3	0
734	8
4 5 2	14
3 6 1	16
686	16
851	16
2 5 8	18
1 5 2	18