Problem B. Best Meeting Places

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 mebibytes

A tree with N vertices is given. Vertices are numbered sequentially from 1 to N. The i-th edge connects vertices A_{i} and B_{i}, and has weight C_{i}, for $1 \leq i \leq N-1$.

The teleport distance between two vertices of the tree is the maximum weight of the edge on the shortest path connecting them. The teleport distance between a vertex and itself is defined as 0 .

People living on the tree want to hold N meetings. The i-th meeting is attended by people living in the vertices numbered from 1 to i. This year, because of the spread of coronavirus, the meeting participants will arrive at X selected locations, and then connect via Internet from these locations.

More formally, for each meeting, we will choose X pairwise distinct vertices $v_{1}, v_{2}, \ldots, v_{X}$. Once the vertices are determined, each person will move to one of the vertices v_{1}, \ldots, v_{X} with the minimum teleport distance to it. Let us define the meeting cost for the given X and i as the maximum of teleport distances for meeting participants. We will select the vertices v_{1}, \ldots, v_{X} in such a way that the meeting cost is minimal possible.

The value of X depends on the coronavirus situation, and may vary from 1 to K. To prepare for the meeting in advance, write a program that, for each of the N meetings, finds the sum of the meeting costs for all possible values of X from 1 to K, inclusive.

Input

The first line of input contains two integers N and K : the number of vertices and the upper limit for X, respectively $\left(1 \leq K \leq N \leq 3 \cdot 10^{5}\right)$.

The following $N-1$ lines describe the tree. Each of these lines contains three integers, A_{i}, B_{i}, and C_{i}, telling that there is an edge between vertices A_{i} and B_{i} with weight $C_{i}\left(1 \leq A_{i}, B_{i}, C_{i} \leq N\right)$. It is guaranteed that the resulting graph is a tree.

Output

Print N lines. On line i, print the sum of meeting costs of i-th meeting for all X from 1 to K, inclusive.

Examples

	standard input		standard output
10	4	0	
5	1	2	4
1	6	4	13
6	2	1	21
2	8	9	23
8	3	5	23
3	4	8	30
4	10	9	31
10	9	8	33
9	7	7	34
8	3		0
7	3	4	8
4	5	2	14
3	6	1	16
6	8	6	16
8	5	1	16
2	5	8	18
1	5	2	18

