Problem A. Permutation

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	256 mebibytes

Chiaki has a permutation $p_{1}, p_{2}, \ldots, p_{n}$ of integers $1,2, \ldots, n$ with some unknown positions. She would like to know the number of ways to fill the unknown positions such that the resulting permutation contains a subsequence of length at least 3 that is an arithmetic progression.
As the number may be very large, you are only asked to calculate it modulo $10^{9}+7$.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer $n(1 \leq n \leq 50)$: the length of the permutation.
The second line contains n integers $p_{1}, p_{2}, \ldots, p_{n}\left(0 \leq p_{i} \leq n\right)$, where $p_{i}=0$ means that p_{i} is unknown, and all non-zero elements are distinct.

It is guaranteed that the sum of n in all test cases does not exceed 50 .

Output

For each test case, output an integer denoting the answer.

Example

			standard input		standard output			
2					2			
3								
0	0	0						
7								
1	0	3	0	0	6	0		

