Problem F. Necklace

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

Chiaki has n beautiful gems. The color of the i-th gem is c_{i} and the value is v_{i}.
Chiaki would like to choose at least 3 gems and make a necklace such that the adjacent gems must have different color. Formally, let the indices of gems used in the necklace be $a_{1}, a_{2}, \ldots, a_{m}(m \geq 3)$ in clockwise order. For each $i(1 \leq i \leq m), c_{a_{i}}$ should be different from $c_{a_{i \text { mod } m+1}}$.
Chiaki would like to find a necklace with the maximum possible sum of values: that is, to maximize $\sum_{i=1}^{m} v_{a_{i}}$.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer $n\left(1 \leq n \leq 2 \cdot 10^{5}\right)$: the number of gems.
The second line contains n integers $c_{1}, c_{2}, \ldots, c_{n}\left(1 \leq c_{i} \leq n\right)$ denoting the color of each gem.
The third line contains n integers $v_{1}, v_{2}, \ldots, v_{n}\left(-10^{9} \leq v_{i} \leq 10^{9}\right)$ denoting the value of each gem.
It is guaranteed that the sum of n in all test cases does not exceed $2 \cdot 10^{5}$.

Output

For each test case, the first line contains an integer $m(m \geq 3)$: the number of gems in the necklace (note that you don't need to maximize it). The second line contains m integers $a_{1}, a_{2}, \ldots, a_{m}\left(1 \leq a_{i} \leq n\right)$: the indices of gems used in the necklace in clockwise order. If there are several possible answers, print any one of them.
If Chiaki could not find such a necklace, just output an integer -1 on a single line.

Example

standard input	standard output
4	-1
4	4
11111	1324
1234	4
4	5247
1122	4
1234	3142
8	
26543177	
6	
553346	
$58800-1-2-7$	

