Problem

Given $n \leq 10$ circles of radius ≤ 10 and with centers in $[0,10] \times[0,10]$, approximate the area of their union, up to a factor 1 ± 0.1.

Solutiom

Problem

Given $n \leq 10$ circles of radius ≤ 10 and with centers in $[0,10] \times[0,10]$, approximate the area of their union, up to a factor 1 ± 0.1.

Solutiom

(1) Can compute the area with high precision using numeric integration.

Not too hard, but a bit of code, and there is a simpler solution: use sampling.

Problem

Given $n \leq 10$ circles of radius ≤ 10 and with centers in $[0,10] \times[0,10]$, approximate the area of their union, up to a factor 1 ± 0.1.

Solutiom

(1) Can compute the area with high precision using numeric integration.

Not too hard, but a bit of code, and there is a simpler solution: use sampling.
(2) Sample r uniformly random points in $[-10,20] \times[-10,20]$. (this box chosen so that all the circles are contained in it)

Problem

Given $n \leq 10$ circles of radius ≤ 10 and with centers in $[0,10] \times[0,10]$, approximate the area of their union, up to a factor 1 ± 0.1.

Solutiom

(1) Can compute the area with high precision using numeric integration.

Not too hard, but a bit of code, and there is a simpler solution: use sampling.
(2) Sample r uniformly random points in $[-10,20] \times[-10,20]$.
(this box chosen so that all the circles are contained in it)
(3) If x of the r points are inside some circle, we estimate the area as $\frac{x}{r} \cdot 30^{2}$.

Problem

Given $n \leq 10$ circles of radius ≤ 10 and with centers in $[0,10] \times[0,10]$, approximate the area of their union, up to a factor 1 ± 0.1.

Solutiom

(1) Can compute the area with high precision using numeric integration.

Not too hard, but a bit of code, and there is a simpler solution: use sampling.
(2) Sample r uniformly random points in $[-10,20] \times[-10,20]$.
(this box chosen so that all the circles are contained in it)
(3) If x of the r points are inside some circle, we estimate the area as $\frac{x}{r} \cdot 30^{2}$.
(1) Analysis (not needed to solve the problem): can prove that you expect a relative error around $24 / \sqrt{r}$. If $r>100 \mathrm{k}$ this starts becoming small enough, and with $r=1$ million the sampling error is very unlikely to be too large.

Problem

Given $n \leq 10$ circles of radius ≤ 10 and with centers in $[0,10] \times[0,10]$, approximate the area of their union, up to a factor 1 ± 0.1.

Solutiom

(1) Can compute the area with high precision using numeric integration.

Not too hard, but a bit of code, and there is a simpler solution: use sampling.
(2) Sample r uniformly random points in $[-10,20] \times[-10,20]$.
(this box chosen so that all the circles are contained in it)
(3) If x of the r points are inside some circle, we estimate the area as $\frac{x}{r} \cdot 30^{2}$.
(9) Analysis (not needed to solve the problem): can prove that you expect a relative error around $24 / \sqrt{r}$. If $r>100 \mathrm{k}$ this starts becoming small enough, and with $r=1$ million the sampling error is very unlikely to be too large.

Statistics at 4-hour mark: 267 submissions, 117 accepted, first after 00:07

