
W – solution
Author: Zoltán Szabó

Recurrence

By definition, a W-shaped array must contain one local maximum and two local minima
situated to the left and right of the local maximum. If any of these extremes are repeated,
we refer to all their occurrences collectively. For example, in the array

V = (5, 4, 2, 2, 2, 3, 5, 7, 7, 7, 6, 6, 3, 8)

the local maximum is (7, 7, 7) and the local minima are (2, 2, 2) and (3). Let us divide
the array into 5 non-overlapping zones as shown in Figure 1.

A
B

C

D
E

Figure 1: Breakdown of a W.

• zone A contains all the elements before the first local minimum;

• zone B contains the elements from the first local minimum up to, but not including,
the local maximum;

• zone C contains just the local maximum;

• zone D contains the elements after the local maximum, up to and including the last
local minimum;

• zone E contains the elements after the last local minimum.

In the example above, A = (5, 4), B = (2, 2, 2, 3, 5), C = (7, 7, 7), D = (6, 6, 3), E = (8).
From the requirement that every segment contain two distinct values, it follows that all
5 zones must be non-empty if the array is W-shaped.

1



We now sort the array and process every group of equal values, from the smallest to the
largest, according to the following rules:

1. The group may be placed in one zone or distributed among several zones.

2. All zones must receive at least one element.

3. Zone A may receive elements only after zone B received at least one element. Sim-
ilarly, zone E may receive elements only after zone D received at least one element.

4. Zone C may receive elements only after zones B and D received at least one element
each.

5. Once zone C received its elements, zones B, C and D may not receive any more
elements.

We use five bits to keep track of empty (0) and occupied (1) zones. Thus the 5-bit state
01000 means that so far we have been putting elements in zone B only. Naturally, we
start in state 00000 and must count the number of ways to process all groups and end
up in state 11111. Therefore, we are looking for a recurrence relation of the form

Cs(k) =
∑
s′

Cs′(k − 1) ·W (s′, s, G(k))

where

• k is the index of the group of equal values we are currently distributing;

• s is the 5-bit state after distributing group k;

• s′ are the possible states before distributing group k;

• G(k) is the number of equal elements in group k;

• W (s′, s, G(k)) is the number of ways of distributing G(k) equal elements in state s′

so as to end up in state s.

We can compute all these values by hand, but the process is tedious and error-prone.
A safer approach is to compute them programmatically. We loop through every pair
of 5-bit states and determine if (a) the states are valid and (b) the transition between
them is valid. Although theoretically there are 25 = 32 states, many of them are invalid.
For example, state 00001 is invalid because zone E cannot have elements while zone D
is empty (rule 3). Furthermore, some transitions are invalid: we cannot transition from

2



01000 to 01110 using a single group of values, because we need to assign elements to zone
D before assigning (larger) elements to zone C (rule 4). We are generally allowed to loop
to the same state: going from 01010 to 01010 means we keep adding elements to zones B
and D only. The complete state diagram is shown in Figure 2.

00000start 01010 11011 01110

00010

00011 01011

01111

01000

11000 11010

11110

11111

Figure 2: State diagram for zone transitions.

What about the W coefficients? For example, how many ways are there to distribute
G(k) = 10 equal values while moving from state s′ = 01000 to state s = 11010? Clearly
we must distribute one element each to zones A and D, as those zones are newly occupied
during this transition. The remaining eight values can go to any of the three zones A, B
and D. The formula for this, which we provide without proof, is known as combinations
with repetition:

((
8

3

))
=

(
8 + 3− 1

3− 1

)
= 45

In general, if s has bits bits of 1, of which new are new in comparison to s′, then the
formula is:

W (s′, s, G(k)) =

((
G(k)− new

bits

))
=

(
G(k)− new + bits− 1

bits− 1

)
It follows that we simply need to count the new and total bits for every state transition.
These values need to be adjusted when zone C is involved. When zone C is occupied for
the first (and only) time, zones B and D may not be modified at the same time, so we

3



subtract 2 from bits. Similarly, when zone C is already present in s′, we may not modify
any of the zones B, C or D, so we subtract 3 from bits.

Optimizations

Since computing Cs(k) only depends on Cs(k−1), we do not need to store an O(n) matrix
of data, but only two rows. Once Cs(k) is computed for all s, we can discard and reuse
the space for Cs(k − 1).

Symmetrical states will lead to equal values, which means that we can keep one copy
and count it twice in transitions. For example, state 01000 is symmetrical to 00010 and
they both participate in C01010(k). Therefore, we discard 01000 completely and count
00010 twice when computing C01010(k). This is sensibly faster, although not required for
a perfect score.

The number of zones where we distribute values from a single group can be at most 4.
It can never be 5, since if zone C is occupied, it prevents us from using zones B, C and
D ever again. Therefore bits− 1 ≤ 3 and we can compute combinations on the fly using
multiplications and divisions. Precomputing the combinations reduces the running time
by some 10-20%, but this is not required for a perfect score.

Special case: two distinct values

Let the values be v1 < v2, having c1 and c2 occurrences respectively. Consider the string
of all the occurrences of v2 with c2− 1 gaps in between. To obtain the W shape, we must
insert the value v1 in two of the gaps. We can choose the gaps in (c2 − 1 choose 2) ways.
For a fixed pair of gaps, we can distribute the c1 occurrences of v1 in c1 − 1 ways. Thus,
the number of solutions is

S(c1, c2) =
(c1 − 1)(c2 − 1)(c2 − 2)

2

Special case: all distinct values (first method)

This method leads to a direct formula, which is a bit lengthy to calculate, but requires
only basic math. When all the values are distinct, the only input value we need is n.
Without loss of generality, let us assume that the element values are −1, 0, 1, . . . , n− 2.
Clearly, the value -1 must be a local minimum. Let us assume it is the left one and we
will double our answer to account for mirror solutions. Let m be the right local minimum

4



and p be the local maximum, with 0 ≤ m < p ≤ n− 2. Finally, let S1, S2, S3 and S4 be
the four segments of the W from left to right, as shown in Figure 3.

S1

-1

S2

p

S3

m

S4

Figure 3: Construction of a W

Then, in order to satisfy the inequalities on every segment, we can distribute the other
elements among segments as follows:

values (inclusive) segments
0 . . .m− 1 S1, S2

m+ 1 . . . p− 1 S1, S2, S3, S4

m+ 1 . . . n− 2 S1, S4

This distribution will count some illegal configurations, as S1 and/or S4 may remain
empty (note that S2 and S3 are guaranteed to have at least two values). We therefore
have to subtract the number of configurations that leave either S1 or S4 empty, then add
back the number of configurations that leave both S1 and S4 empty, which we subtracted
twice. The full table of possibilities is:

values
segments

regular S1 empty S4 empty S1, S4 empty
0 . . .m− 1 S1, S2 S2 S1, S2 S2

m+ 1 . . . p− 1 S1, S2, S3, S4 S2, S3, S4 S1, S2, S3 S2, S3

m+ 1 . . . n− 2 S1, S4 S4 S1 –

The rest of the algorithm just entails getting the formulas right. First, some notations:

• S(n, p,m) denotes the number of regular distributions for a fixed p and m;

• S ′(n, p) denotes the number of regular distributions for a fixed p and all m;

• S ′′(n) denotes the number of regular distributions for all p and m.

5



S(n, p,m) = 2 · 2m · 4p−m−1 · 2n−p−2

= 21+m+2·(p−m−1)+n−p−2

= 2n−3 · 2p−m

S ′(n, p) =

p−1∑
m=0

S(n, p,m)

= 2n−3 · (2p + 2p−1 + · · ·+ 2)

= 2n−3 · (2p+1 − 2)

= 2n+p−2 − 2n−2

S ′′(n) =
n−2∑
p=1

S ′(n, p)

= 2n−2 · (2 + 22 + · · ·+ 2n−2)− (n− 2) · 2n−2

= 2n−2 · (2n−1 − 2)− (n− 2) · 2n−2

= 22n−3 − n · 2n−2

We similarly define P, P ′, P ′′ and Q,Q′, Q′′ for the cases where S1 and S4 remain empty,
which yields

P ′′(n) =
3n−1 + 1

2
− n

Q′′(n) = 3n−1 − 2n + 1

For the last case, note that S1 and S4 can both be empty when p = n− 2, otherwise we
would have no place for elements larger than p. We get

R′′(n) = 2n−1 − 2

and the answer is

6



A(n) = S ′′(n) + P ′′(n) +Q′′(n) +R′′(n)

= 22n−3 − n · 2n−2 − 3n−1 + 1

2
+ n− 3n−1 + 2n − 1 + 2n−1 − 2

= 22n−3 − n · 2n−2 − 3n + 7

2
+ n+ 3 · 2n−1

Special case: all distinct values (second method)

Let A,B,C,D and E be the five elements in the corners of the W, in increasing order.
There are only 16 valid ways to arrange these elements in the corners, which can be
determined experimentally. For example, A, being the minimum, must be in the lower
corners. Furthermore, every two arrangements are mirror images, such as CBDAE and
EADBC, shown in Figure 4.

C

B

D

A

E E

A

D

B

C

Figure 4: Corner values and symmetry

Now let X, Y, Z and T be the distances between these five elements, as shown in Figure
5.

A · · · B · · · C · · · D · · · E

X Y Z T

Figure 5: Array spacing between corner elements

For the case CBDAE, where can the X elements go in the permutation so as to respect
the W ordering? On the segments DA and AE, so there are 2X ways of distributing
these elements. Similarly, the Z elements can go on the segments BD,DA and AE, so
there are 3Z ways of distributing them.

In general, for every corner arrangement and for every quadruple (X, Y, Z, T ) we need
to compute aX · bY · cZ · dT , where a, b, c, d depend on the corner arrangement and can
be computed by hand with relative ease. The answer is the sum of all products. The
question is, how do we compute it in O(n)?

7



For a fixed C (so fixed X + Y ), the number of ways to distribute elements on its left
(between A and C) is

S = aX+Y · b0 + aX+Y−1 · b1 + · · ·+ a0 · bX+Y

When moving C one position to the right, the number of ways becomes

S ′ = aX+Y+1 · b0 + aX+Y · b1 + ...+ a0 · bX+Y+1

= S · a+ bX+Y+1

It follows that these values can be calculated in O(1) from one another. The base case is
C = 2, when clearly A = 0, B = 1, X = Y = 0 (no elements between A,B and C) and
S = 1.

The same applies to C,D,E, Z, T, c and d to the right of C. The answer (for an arbitrary
corner arrangement) is the convolution of the values obtained on either side of C.

Naive approach

We could simply generate all the distinct permutations and count those that are W-
shaped. This is obviously inefficient and should only score 15 points. However, it works
reasonably fast for small test cases and it should only take 15-20 minutes to implement.
It can be useful in double-checking and debugging the efficient implementations, which
are much more tedious and bug-prone.

To achieve this, we can backtrack at every position through all the distinct available
values. To avoid duplicates at every step, we keep a bit mask of used values. This is
cheap, although it limits the naive approach to values between 1 and 31.

As for checking the W-shape, it is best to do this during the backtracking and prune
early, rather than wait until each permutation is generated. This can be done a number
of ways. We consider the shortest and most elegant to involve the finite state automaton
in Figure 6 to track our progress along the W.

8



Astart B C D E

F

<

=

> <

=, > <, =

> <

=, > <, =

>

<, =, >

Figure 6: Finite state automaton for checking the validity of a W-shape.

Its states are:

state meaning
A (start) on segment 1; possibly read some equal values, but no inequality yet
B on segment 1; read a smaller value; safe to move on to segment 2
C on segment 2; read a larger value; safe to move on to segment 3
D on segment 3; read a smaller value; safe to move on to segment 4
E (accepting) on segment 4; safe to end at any time
F (error) array is not W-shaped; absorbing state

The transitions between states are not based on array values, but on comparisons between
consecutive values. For example, “<” means “the previous value was smaller than the
current value”. This translates to the trivial code:

 int STATES[6][3] =
 {
 { 5, 0, 1 }, /* 0 = state A */
 { 2, 1, 1 }, /* 1 = state B */
 { 2, 2, 3 }, /* 2 = state C */
 { 4, 3, 3 }, /* 3 = state D */
 { 4, 4, 5 }, /* 4 = state E */
 { 5, 5, 5 }, /* 5 = state F */
 };



 void bkt(int level, int state) {
 if (state == ERROR_STATE) {
 return;
 }


 if (level > n) {
 if (state == ACCEPTING_STATE) {
 numSolutions++;
 }
 return;

9



 }


 for (int i = level; i <= n; i++) {
 ...
 int cmp = CMP(v[level - 1], v[level]); /* should return 0, 1 or 2 */
 bkt(level + 1, STATES[state][cmp]);
 ...
 }
 }

10


