Problem J. Three Countries

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

Today, you want to measure the accessible area of Teyvat.
Mondstadt, Liyue, and Inazuma are the three countries in Teyvat. The territories of these countries can be regarded as three circles c_{1}, c_{2}, and c_{3}, respectively. It is possible that some of the circles overlap.
Let S_{i} be the set of points in c_{i}. The area of Teyvat, S, is defined as the convex hull of points in $S_{1} \cup S_{2} \cup S_{3}$. Formally, S is the smallest set of points satisfying the following two conditions:

- $S \supseteq S_{1} \cup S_{2} \cup S_{3}$,
- $\forall p_{1}, p_{2} \in S, \forall \alpha \in[0,1], \alpha p_{1}+(1-\alpha) p_{2} \in S$.

You are given the circles c_{1}, c_{2}, and c_{3}. Your task is to calculate the area of S.

Input

The first line contains a single integer t, the number of test cases $\left(1 \leq t \leq 10^{4}\right)$.
Each test case is given on three lines. The i-th of these lines contains three integers, x, y, and r, which are the coordinates of the center and the radius of i-th circle ($1 \leq x, y, r \leq 100$).

Output

For each test case, output a single real number representing the area of S.
Your answer will be considered correct if its absolute or relative error when compared with the jury's answer is no more than 10^{-6}.

Example

	standard input	standard output	
3		7.14159265359	
1	1	1	8.79844690308
2	1	1	58923.76801932990
3	1	1	
1	1	1	
2	2	1	
3	3	1	
1	1	100	
85	27	100	
53	82	100	

