Problem E. Escaped from NEF

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 mebibytes

A cactus is a connected undirected graph in which every edge lies on at most one simple cycle. Intuitively, a cactus is a generalization of a tree where some cycles are allowed. Multiedges (multiple edges between a pair of vertices) and loops (edges that connect a vertex to itself) are not allowed in a cactus.
You are given a directed graph G with n vertices with the following property. Consider an undirected graph G^{\prime} with n vertices built as follows: for each directed edge (u_{i}, v_{i}) in G, add an undirected edge $\left\{u_{i}, v_{i}\right\}$ to G^{\prime}. Then G^{\prime} is a cactus.
Find the number of ordered pairs of vertices (x, y) such that there exists a path from vertex x to vertex y in G. Assume that a path from a vertex to itself always exists.

Input

Each test contains multiple test cases. The first line contains the number of test cases $t\left(1 \leq t \leq 10^{5}\right)$. Description of the test cases follows.
The first line of each test case contains two integers n and m, denoting the number of vertices and the number of edges in $G\left(2 \leq n \leq 250000 ; n-1 \leq m \leq\left\lfloor\frac{3(n-1)}{2}\right\rfloor\right)$.
Each of the next m lines contains two integers u_{i} and v_{i}, denoting an edge in G directed from u_{i} to v_{i} $\left(1 \leq u_{i}, v_{i} \leq n ; u_{i} \neq v_{i}\right)$.
The undirected graph consisting of undirected edges $\left\{u_{i}, v_{i}\right\}$ is a cactus.
It is guaranteed that the sum of n over all test cases does not exceed 250000 .

Output

For each test case, print the number of ordered pairs (x, y) such that vertex y is reachable from vertex x in G.

Example

	standard input	
2		6
3	3	18
1	2	
1	3	
2	3	
5	5	
1	2	
2	3	
3	4	
4	5	
4	2	

