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Problem A. 6789

Problem idea : Seunghyun Joe (ainta)

Problem preparation : Seunghyun Joe (ainta)

First solver: Polish Mafia : Sokolowski, Radecki, Smulewicz (00:04)

Total solved team: 119

The whole grid is point symmetric if for every cell (i, j) (1 ≤ i ≤ N, 1 ≤ j ≤ M), the opposite cell

(N + 1 − 1,M + 1 − j) is in a point symmetric shape. Let’s pair those cells with opposite side cells. There

are two cases:

• Two paired cells are the same. Then it should always be 8. Otherwise, we can’t make a magic matrix.

This case can occur in the center if N,M are both odd.

• Two paired cells are different. If both cells are 8, then they are already symmetric. If both cells are 7,

then you should rotate one of them. If both cells are 6 or 9, then you should rotate one of them if and

only if they are equal. Otherwise, we can’t make a magic matrix.

Shortest solution: 381 bytes

Problem B. Bigger Sokoban 40k

Problem idea : Gyeonggeun Kim (kriii)

Problem preparation : Gyeonggeun Kim (kriii)

First solver: SPb ITMO University 1 : Sayutin, Kirillov, Budin (03:18)

Total solved team: 3

If we think about how large the minimum number of moves can grow, there is an upper bound of O((NM)2).

This is because the problem of finding the minimum can be solved by a breadth-first search, with each state

(xs, ys, xp, yp) denoting that the upper-left part of the box is in (xs, ys), and the player is in (xp, yp). But

can we really construct a grid that requires Ω((NM)2) moves?

To achieve this, we must force the player to use at least a constant fraction of states. This means two things:

first, the box must be pushed all the way around the grid. Second, after pushing the box, the player must

go all the way around the grid in order to push again.

For the first condition, just build a long twisted corridor. For the second condition, we will create the fol-

lowing situation: we push the box, then we want to push it in a different direction, but we must go all the

way around to reach the other side of the box.

There are many ways to build such a corridor. For example, consider grids like following:
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We can connect these turning points to make a bigger grid. Turning the direction of the box in each structure

will force the player to tour the entire part of the grid, as specified above in the red characters.

In a 49 × 51 grid, we can put at least 2500/52 − 2 · (50/5) = 80 turning points somehow, and each touring

will need at least 2500/5 = 500 moves. So we can make the grid that needs at least 40k moves to solve. You

can either write a code to generate the grid, or build the grid by hand and hardcode it into the solution. In

any case, it’s highly recommended to write a checker that counts the required number of moves.

Shortest solution: 2568 bytes

Problem C. Cleaning

Problem idea : Geunwoo Bae (functionx)

Problem preparation : Geunwoo Bae (functionx)

First solver: Kazan+SPb : Rakhmatullin, Gainullin (04:36)

Total solved team: 2

Since the problem is about the paths on a directed graph, group the vertices by SCC first. Each SCC is a

connected component on the grid.

When you add SCCs by topological order (for A → B, A is added earlier), the shape is a group of rectangles

that do not intersect in the grid. It is because the directions of the boundary grids outside SCCs are fixed.

For each rectangle, the following lemma is satisfied.

Lemma 1. For each rectangle, at least one of the following two sentences is true:

1. For every cell inside a rectangle, the path going past the left boundary and the right boundary both

exists.

2. For every cell inside a rectangle, the path going past the upper boundary and the lower boundary both

exists.
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Proof. Let’s use mathematical induction.

• Consider the SCC does not intersect with other SCCs that have higher priorities. If the upper boundary

is unreachable, all of the directions of the upmost grids are U. Since the rectangle is SCC, both upper

left position and upper right position is reachable. You can reach the left boundary and the right

boundary by going to upmost position and getting out the rectangle. Similarly, you can reach the left

boundary and the right boundary when the lower boundary is unreachable.

• For other cases, intersections with other SCCs always appears as one of three types at the following

figure. For the first type, the merged rectangle is the smallest rectangular region that covers the SCC.

Thus, for all four directions, there are at least one reachable grid on the SCC. Assume that there are no

path going past the upper boundary. Then all the directions of the upmost grids on the SCC are U. If

there is a smaller rectangle located at the upper boundary, the path from the upmost grid on the SCC to

the upmost grid inside the smaller rectangle exists because it is free to move left or right. It contradicts

that the SCCs are added by topological order. Thus, there are no smaller rectangles. It means that

all of the directions of the upmost cells are U, and you can reach the left boundary and the right

boundary. Similarly, you can reach the left boundary and the right boundary when the lower boundary

is unreachable. As a result, both upper and lower boundary are reachable if either left or right boundary

is unreachable. If you start in the smaller rectangle, the path (SmallRect) → (SCC) → (Outside)

exists.

For the second type, all of the directions of the leftmost grids in the smallest rectangular region that

covers the SCC are L (only if there is a rectangle at left). You can reach the upper boundary and the

lower boundary by using the leftmost grids (if there are no rectangle at left, you can use the rightmost

grids instead). If you start on the rectangle at the leftmost or the rightmost position of the SCC, either

the path (Rect)→ (Outside) or the path (Rect)→ (SCC)→ (Outside) exists.

For the third type, the proof is similar to the second type.

To solve the problem, we have to model the graph in O(NMα(NM)) and solve each query in O(log(NM)).

Each node of the graph represents either a SCC or a virtual node. Each node covers a rectangular region

on the grid. Each edge represents a tree edge, a directed edge from a node to its parent, or a sibling edge, a

directed edge from a node to its sibling. If all the tree edges are removed, for each node, either in-degree or

out-degree is less than or equal to 1. A query on the model is given as a path on the tree.
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To construct the model, add SCCs in topological order and manage the rectangles. For each rectangle, store

its position and the escape directions mentioned in the lemma.

When each SCC is added, the edges are added by the following instructions, which can be implemented by

Union-Find Data Structure.

1. For every rectangle inside the smallest rectangular region that covers the SCC, add the tree edges to

the SCC. Merge all rectangles and SCC into a rectangle R.

2. For all rectangles at the leftmost position of R, merge the rectangles, add a virtual node, and add the

tree edges from the rectangles to the virtual node.

3. Repeat this for all rectangles at the rightmost, upper, lower positions of R.

4. Add the sibling edges from the virtual nodes to R. Some edges are not added for some situations.

Author’s Note: Since the depth of tree edges does not exceed N +M , there is a O(Q(N +M)) solution. The

problem would have been better if the constraints were NM ≤ 106 rather than N,M ≤ 103.

Shortest solution: 5316 bytes

Problem D. Container

Problem idea : Gyeonggeun Kim (kriii)

Problem preparation : Gyeonggeun Kim (kriii)

First solver: Intellectual + AESC : Savkin, Lifar, Shekhovtsov (03:32)

Total solved team: 2

Given a binary string, this problem allows three operations about substring manipulation as follows:

12

C + 3

21

112

C + 4

211

122

C + 5

221

Now, we present the binary string as a path on the grid. 1 means move 1 toward the x-axis, 2 means move

1 toward the y-axis. The exmaple about 1212122 follows:
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Then we can represent the three operations as the tiles of size 1× 1(monomino) or 1× 2(domino).

12

21

C + 3

112

211

C + 4

122

221

C + 5

To make the target string in optimal cost, you should find an optimal tiling of monominoes and dominoes

between the path of the given string and the path of the target string. The example when the given string

is 1212122 and the target string is 2212121 follows:

C = 0 C = 2

When we set the cost of every string as a minimized (C + 3) ·#( ) + (C + 4) ·#( ) + (C + 5) ·#( ), it

can be proved every transition is relaxed. Proving this is messy, so I omit it.

Getting optimal tiling is done with the min-cost flow. Basically, put a in every cell.

When substituting two s to a , it costs (C + 4)− 2 · (C + 3) = −(C + 2).

When substituting two s to a , it costs (C + 5)− 2 · (C + 3) = −(C + 1).

The grid is modeled as the bipartite graph, so you can use the min-cost flow and solve this in O(N4 lgN)

time complexity. But this seems slow.
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The length of the successive shortest path in the min-cost flow is monotonically increasing, so making pre-

flow for every possible doesn’t affect the optimality of the solution. Then processing the rest O(N) flow

can be done in O(N3 lgN) time.

The actual order of the process can be arranged with the topological sort.

Note that the shortest solution is implemented with alternative DP approach that runs in O(N2) time.

Contact ainta for more details.

Shortest solution: 2359 bytes

Problem E. Dead Cacti Society

Problem idea : Gyeonggeun Kim (kriii)

Problem preparation : Gyeonggeun Kim (kriii)

First solver: Polish Mafia : Sokolowski, Radecki, Smulewicz (02:45)

Total solved team: 2

First, decompose the cactus into cycles and edges. Now, you can determine whether there exist some pro-

cessed trees whose diameter is not greater than R in O(N +M) time.

To process the decomposed cactus, in reverse DFS order, for each cycle and edge calculate the minimum

possible farthest distance from the pivot vertex where the diameter has not exceeded R. For example, there

is a cycle of size 4, the orange vertex is the pivot vertex in the following figure. There are 4 possibilities to

make the tree.

We process the left half and right half separately. For the left half, let li be the distance from the vertex i, and

di be the minimum possible farthest distance from the vertex i when vertex i is the pivot. For convenience,

the pivot vertex is the vertex 0.
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First, the process for the left half. Let Ri be the diameter when we consider vertex 0 to vertex i, Di be

the minimum possible farthest distance from the pivot vertex when we consider vertex 0 to vertex i. Then

Ri = max0≤p<q≤i [(dp − lp) + (dq + lq)] and Di = max0≤p≤i(dp + lp). We can make recurrence for R and D.

First, Di = max(Di−1, di + li). And we define Xi = max0≤p≤i(dp− lp) = max(Xi−1, di− li) for convenience.

Then, Ri = max
(
Ri−1, Xi−1 + (di + li)

)
. So, we can get all the R,D values incrementally.

The process for the right half is the same as above too. Similarly, we can combine the left half and the right

half.

We can use a binary search in R. So, we can solve this problem in O
(
N lg(N · X)

)
time where X is the

maximum length of edges.

In the actual problem, the new edges are regenerated from cutting side. Generalization is straightforward,

so I omit it.

Shortest solution: 2945 bytes

Problem F. Hilbert’s Hotel

Problem idea : Jaemin Choi (jh05013)

Problem preparation : Jaemin Choi (jh05013)

First solver: Past Glory : Borys Minaiev, Gennady Korotkevich (00:59)

Total solved team: 60

This problem has two independent components: the “2 g x” queries and the “3 x” queries.

2 g x

The x-th number of the group g can be expressed as agx+ bg where ag and bg are constants depending on

g. Initially, a0 = 1 and b0 = 109 + 6 (because we are taking modulo 109 + 7). When k people arrive at the

hotel, we increase every bi by k, then set aG = 1 and bG = 109 + 6. When infinitely many people arrive, we

double every ai and bi, then set aG = 2 and bG = 109 + 6.
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This takes O(Q) per query. Now let’s step back and look at the big picture. After n groups arrive, we

have 2n + 1 linear functions U1, U2, · · · , Un, S0, S1, · · · , Sn; each Ui represents the updates to the previous

groups when group i arrives, and each Si represents the initial state of group i. Given a group number g,

we want to evaluate Gg = UnUn−1 · · ·Ug+1Sg, where f1f2 denotes the composition of two functions f1 and f2.

Denote H0(x) = x and Hn = UnUn−1 · · ·U1, then Hn+1 = Un+1Hn and Gg = HnH
−1
g Sg. The inverse of a

linear function f(x) = ax + b is f−1(x) = a−1x − a−1b. By computing a−1 using Fermat’s little theorem,

you can answer the query by evaluating only three linear functions.

An alternative solution is to use a segment tree with lazy propagation. Each node has a pair {a, b}, meaning

either “I will apply ax + b to all of my child nodes” or “I am the leaf node, and my pair corresponds to

{ag, bg}.” The details will be straightforward if you are familiar with this kind of data structure.

3 x

We trace back the history of the room numbers occupied by the guest currently in room x. Process the “1

k” queries received so far backwards, keeping track of the value x:

• If k > 0: if x ≥ k, then decrease x by k. Otherwise, we found the group number.

• If k = 0: if x is even, then divide it by 2. Otherwise, we found the group number.

This can lead to O(x+Q) per query in two different ways. The first case is when the “1 k” queries are full

of k > 0, but x is too large and k’s are too small. The second case is when the “1 k” queries are full of k = 0,

but x is zero. That means we don’t want to keep subtracting, and we don’t want to keep dividing if x = 0.

We group the consecutive “finite people” queries and the consecutive “infinite people” queries. Let’s call

them the “blocks.” Process the blocks backwards:

• Finite people block: If the number of guests in this block is ≤ x, then decrease x by that number and

skip this block. Otherwise, our guest came from this block. Save the prefix sums for each block, and

apply binary search to find the group number.

• Infinite people block: If x = 0, then skip this block. Otherwise, keep dividing by 2 until it becomes odd

or this block is used up.

Every time you skip two blocks, x decreases by at least half. Therefore this process stops after O(log x)

blocks, and the time complexity reduces to O(log x+ logQ) per query.

Shortest solution: 1507 bytes

Problem G. Lexicographically Minimum Walk

Problem idea : Jaehyun Koo (koosaga)

Problem preparation : Suchan Park (tncks0121)
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First solver: USA1 : Kevin Sun, Scott Wu, Andrew He (00:12)

Total solved team: 113

We will assume that there is a path from S → T , which can be determined with DFS. By definition, you

should minimize the label of first edge, and then second edge, and then third edge, and so on. Thus, a greedy

strategy that only considers the best edge in every moment is sufficient to solve the problem: You simply

pick the edge that have the minimum label, move toward the edge, and repeat.

Let’s be more precise. The greedy algorithm should first guarantee that the edge is feasible (i.e. you can

take the edge and reach the vertex T in 10100), and among them it’s minimum. The first condition can be

checked by a depth-first search: Reverse the direction of the input graph, and find the set of vertices that

are reachable from T . Since we reversed the direction of graph, these vertices are exactly the one which can

reach the vertex T . If we can reach the vertex T , then it could be reached in at most N steps, so we don’t

have to care about its distance unless we used over 10100 − N steps. Thus, the feasible condition can be

easily determined in O(N +M) time, and you can ignore all edges that leads to an infeasible vertex.

After guaranteeing the feasibility, the greedy algorithm should find the minimum label edge. If you are

already at the vertex T , obviously you should stop. Otherwise, you can simply search for the feasible edges

with minimal label, and go toward that direction.

Last but not least issue is the time complexity. If you simply search for the edge with minimum label and

repeat it for 106 times, you will result in the time complexity of something like O(106×N). This is too slow.

However, consider the case where you visit the node that you’ve visited before: After visiting that node, you

know that you will cycle that node almost (little bit less than 10100 step) forever, and you will never reach

T in 106 step anyway. So, if you found the node that had been visited before, just print TOO LONG and

terminate. Since you only visited each node at most 1 time, and each edge is considered at most 1 time, the

time complexity here is O(N +M).

Shortest solution: 885 bytes

Problem H. Maximizer

Problem idea : Gyeonggeun Kim (kriii)

Problem preparation : Gyeonggeun Kim (kriii)

First solver: Polish Mafia : Sokolowski, Radecki, Smulewicz (00:11)

Total solved team: 109

Exactly when is the difference sum maximized? Without the loss of generality, assume B is sorted in de-

scending order. Then when we sort A in ascending order, we can get the maximum. This can be proven by

the exchange argument. But, there is another way to achieve the maximum.

Let’s first assume N is even, so N = 2K. After sorting A and B, the integers in [1,K] are matched with the

integers in [K + 1, 2K]. The integers in [K + 1, 2K] are always bigger than the integers in [1,K], so shuffling
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the integers in [1,K] and shuffling the integers in [K + 1, 2K] shouldn’t be changing the sum of differences.

Thus, the answer is the minimum number of swaps to match the integers in [1,K] from A and the integers

in [K + 1, 2K] from B in the same index.

Next, let’s assume N is odd, so N = 2K − 1. Similar to even, but there is K in this case. K can match with

either the integers in [1,K − 1] or the integers in [K + 1, 2K − 1], which needs more case handling. So, there

are two cases: match the integers in [1,K − 1] from A and the integers in [K + 1, 2K − 1] from B, or match

the integers in [1,K] from A and the integers in [K, 2K − 1] from B.

To find the minimum number of swaps to match a pair of intervals, Look at the ascending indices of the

chosen integers, and compute the sum of the differences of the matching indices. Thus, we can solve every

case in O(N) time complexity.

Shortest solution: 473 bytes

Problem I. Minimum Diameter Spanning Tree

Problem idea: Jaehyun Koo, Suchan Park (koosaga, tncks0121)

Problem preparation : Suchan Park (tncks0121)

First solver: Kazan+SPb : Rakhmatullin, Gainullin (00:21)

Total solved team: 36

Let’s think about the structure of the diameter in a tree. Consider the midpoint of a diameter, which is

commonly known as the center of the tree. The center may not be a vertex and lie inside an edge. Given

the diameter of the tree, it’s trivial to find the center of tree. Interestingly, it turns out that we can also

do the opposite: Suppose that we want to find the minimum diameter spanning tree given the center of the

tree. Then we can simply take the shortest path tree starting from the center, and call it as an answer.

This is true because every diameter of the tree passes the center. If we know where the center is, then the

length of a diameter is the sum of the distance for the farthest node, and the second-farthest node. In fact,

if it’s really a center of the tree, then the second-farthest node has the same distance as the farthest node.

Thus, the strategy of minimizing the distance for each node is optimal.

Now, we will try to brute force the center of tree. Let’s just fix the edge e = {u, v,Wu,v} where the center

belongs. We can see that the center will have two children u, v, and other N − 2 nodes will be in the subtree

of u or v. Fix two vertices faru, farv, which is the farthest vertex that is in the subtree of u, v, respectively.

If we fix these vertices, the center can be found. If the center is in the edge as we anticipated, we can run

a shortest path algorithm from this center and find the actual answer in O(n2) time. Combined with the

number of candidates O(n4), we have an O(n6) poly-time algorithm.

Let’s optimize this. First, it will be good to avoid using a shortest path algorithm for each center. The

length of a diameter is obvious, so if we can be sure if it’s a valid candidate, we can just take the mini-

mum. Consider all N − 2 other vertices x. By our assumption, all N − 2 other vertices x should have either
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dist(x, u) ≤ dist(faru, u) or dist(x, v) ≤ dist(farv, v). And if these conditions are all satisfied, then the

shortest path algorithm will report that faru, farv are actually the farthest. So we don’t need to run a

shortest path, and the complexity is O(n4).

To reduce to O(n3), Let’s just fix the faru. Then, farv should be the farthest vertex from v that is not

covered by u. So fixing the faru automatically fixes farv. Such farv can be found in O(1) amortized time,

if we precalculate the sorted array of distances for each v in O(n2 log n). One might be worried that fixing

the farv that way will set the center outside of the edge. This concern is actually true, but in that case the

optimal answer will lie in that direction of the center, so we can simply ignore such case and still enumerate

all the candidate.

Shortest solution: 2413 bytes

Problem J. Parklife

Problem idea : Jaehyun Koo (koosaga)

Problem preparation : Jaehyun Koo (koosaga)

First solver: U of Tokyo UT a.k.a ls : Inoue, Isa, Takaya (00:25)

Total solved team: 61

The bridge connecting the point Si, Ei is visible in the interval [Si, Ei). Since no bridges are crossing, for any

pair of distinct bridge, their visible intervals are either disjoint, or contained in another. Since the intervals

are disjoint or nested, we can observe a characteristic that is very similar to the bracket sequence. For a

bracket sequence, every opening bracket has a matching closing bracket, and no pairs of brackets intersect.

With this analogy we can build a following reduction: Given a bracket sequence, find a maximum subset of

paired brackets which has at most K brackets nested.

A bracket sequence yields a parse tree, so let’s solve the problem on the parse tree. Matching brackets form

the vertices, and the ones directly contained in the sequence form the edges. In this parse tree, we want to

find a maximum subset of vertices in which every path to the root contains at most K selected vertices.

Now we know this problem is somehow related to tree, so before moving on let’s see how to build a tree.

With the interval representation, although we can’t know the tree, we can know the preorder sequence of

the tree: If we sort the edges in an increasing order of Si (and in case of tie, decreasing order of Ei) we

exactly get the preorder sequence. From the preorder sequence, we can recover the tree using stacks. You

can simply go over the preorder sequence, and maintain the vertices that are in the path to the root. Since

you can know whether an interval is an ancestor to another interval (by checking the containment), this part

can be simply done in O(N) time excluding the sorting. Note that, this will actually yield a forest instead

of a tree, so it will be helpful to just make the auxiliary root (for example, an interval [−107, 107] with cost 0).

Now, we will try to solve the problem on the tree with dynamic programming. Let DPi,j = {maximum

answer for the subtree of i where every path has at most j selected vertices.}. For computing DPi,j , if you

select node i, then you can pick at most j − 1 nested nodes for each subtree. Otherwise you can freely pick
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j nested nodes. This yields a simple O(n2) tree DP which is quite slow. By observing that j doesn’t have to

be larger than the maximum depth in subtree i, we can have an O(n log n) algorithm on balanced trees, but

this is not a case for all inputs.

Now we will prove the following fact:

Lemma 2. For any i, DPi,∗ is upward convex.

Proof. We use induction. For leaf nodes this is obvious. For non-leaf nodes, Let’s only consider the case of not

selecting node i. By inductive hypothesis, you only add a constant or add two upward convex functions, which

will again yield an upward convex function. If we add new node i, we are taking g(i) = max(f(i−1)+w, f(i))

to some upward convex function f . This is a Minkowski sum of f and a vector (1, w), which is again

convex.

Note that the calculation of g(i) = max(f(i−1)+w, f(i)) is just a Minkowski sum: If you store the derivative

in a sorted set, then taking such function is simply adding a value w to the sorted set. Thus, we can maintain

such the set with heap: For leaf nodes, the heap only contains the single value w. For non-leaf nodes, we

merge all heaps (by adding the values pairwise) and insert a single value w. Merging two heaps can be simply

done in the size of the smaller heap, which is enough to yield an O(n log2 n) time complexity by the argument

used in Union-Find algorithm. (This argument is colloquially known as small-to-large method, so you can

google for relevant information.)

However, I know you are not satisfied with O(n log2 n) algorithm in such a small time limit, so here is the

bonus:

Lemma 3. The above algorithm runs in O(n log n) time.

Proof. The above algorithm inserts at most n values into the priority queues. If an element is removed from

a priority queue, it is merged with other values from another priority queue, and never appears again. So

every value is inserted and deleted for at most O(n) times.

Although the logic is pretty involved, the actual code is quite short. (Tester kdh9949’s code is less than 60

lines)

Shortest solution: 1314 bytes

Problem K. Wind of Change

Problem idea : Jaehyun Koo (koosaga)

Problem preparation : Jaehyun Koo (koosaga)

First solver: Polish Mafia : Sokolowski, Radecki, Smulewicz (01:02)

Total solved team: 8

Construct a centroid decomposition for both trees T1, T2. Say that two nodes i, j have a lowest common an-

cestor L1, L2 in each centroid, then the distance between these two node is dist(T1, L1, i) + dist(T1, L1, j) +

dist(T2, L2, i) + dist(T2, L2, j). Since every node has at most logN ancestors on the centroid decomposition,
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for a fixed i there exists at most log2N pairs of ancestors, so we may try to iterate all L1, L2 for each i.

Now, we have to solve a following problem: Given a node L1, L2, find a node j 6= i with smallest value of

dist(T1, L1, j) + dist(T2, L2, j), which has a pair of LCA with i on exactly node (L1, L2). Having an exact

condition makes life harder, so let’s just relax this condition, and say that we need to find a node j 6= i

which is in the subtrees of both nodes (L1, L2). In this case, we can just enumerate all N log2N tuples of

(ancestor on tree 1, ancestor on tree 2, dist(T1, L1, x) + dist(T2, L2, x)), and for each first / second value,

maintain the first and second minimum of the third value. By carefully avoiding sort or hashmaps (simple

DFS on centroid decomposition suffices), this part can be done in O(N log2N) time and O(N logN) memory.

Now I’ll show that the above solution is actually just correct. We can see that the solution actually consid-

ers all possible pairs, so it never gets longer than the answer. Also, since dist(T1, L1, i) + dist(T1, L1, j) ≥
dist(T1, i, j), it never gets shorter.

There exists an alternative solution that uses the same relaxation idea, but considers a centroid decomposi-

tion for only T1. In this case, we have to minimize dist(T1, L1, i) + dist(T1, L1, j) + dist(T2, i, j). We can do

this by finding a compacted tree, and solve this problem with DP. (To learn about compacted trees, you can

try solving “Factories” from JOI Open 2014.) This solution is less beautiful and more technical, but there

are two good things: This solution can be optimized to O(N logN) time, and you can compute the MST on

the complete graph with weight W (i, j) = dist(T1, i, j) + dist(T2, i, j) in O(N log2N) with this solution and

the O(N) solution from “Tree MST” in AtCoder. With another method you can reduce the complexity to

O(N logN), which means that we just found the funniest way to compute the Manhattan distance MST in

O(N logN).

Shortest solution: 2062 bytes

https://atcoder.jp/contests/cf17-final-open/tasks/cf17_final_j
https://en.wikipedia.org/wiki/Minimum_spanning_tree#Linear-time_algorithms_in_special_cases
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