Railway
 Problem ID: railway

A couple of years ago the Bergen Ministry of Infrastructure prepared a plan for a new light railway network. This network was supposed to connect all n neighbourhoods in the city with $n-1$ railway tracks in such a way, that there would be a path from every neighbourhood to every other neighbourhood. The planned tracks are identified by numbers from 1 to $n-1$.

Years passed, new elections are approaching, and the railway network still exists only on paper. Therefore the Minister of Infrastructure (representing a party holding disagreement in high regard) decided to construct at least some part of the plan. He asked each of his m deputy ministers to choose which neighbourhoods they
 thought should be connected. That will result in a list of necessary tracks for each deputy minister. If a deputy minister thinks that the neighbourhoods a_{1}, \ldots, a_{s} need to be connected, then according to him or her, the necessary tracks are all those which lie on planned paths from a_{i} to a_{j} for some $1 \leq i<j \leq s$.

The minister just received all lists from the deputy ministers. He decided to construct in the first place the tracks which are requested by at least k deputy ministers. Your task is to prepare a list of these tracks.

Input

In the first line of the input there are three integers n, m and k. The next $n-1$ lines contain the plan; in the i-th of these lines there are two integers a_{i} and $b_{i}\left(1 \leq a_{i}, b_{i} \leq n, a_{i} \neq b_{i}\right)$, specifying that the i-th track on the plan is between neighbourhoods a_{i} and b_{i}.

In the next m lines there are neighbourhoods chosen by deputy ministers; the i-th of these lines begins with an integer s_{i} which specify the number of neighbourhoods chosen by the i-th deputy minister. After it there are s_{i} integers specifying these neighbourhoods. The total length of all lists of deputy ministers is at most S, i.e. $\sum_{i=1}^{m} s_{i} \leq S$.

Constraints

We always have $2 \leq s_{i} \leq n \leq 100000, S \leq 100000$, and $1 \leq k \leq m \leq 50000$. For subcases, the inputs have these further restrictions:

Group 1: 8 points $n \leq 10000, S \leq 2000$,
Group 2: 15 points $n \leq 10000, m \leq 2000$,
Group 3: 7 points Every neighbourhood is the endpoint of at most 2 planned tracks.
Group 4: 29 points $k=m, s_{i}=2$,
Group 5: 16 points $k=m$,
Group 6: $\mathbf{2 5}$ points No further restrictions.

Output

In the first line of the output you should write one integer r, specifying the number of tracks which are requested by at least k deputy ministers. In the second line you should write r identifiers of these tracks in ascending order.

Explanation of sample

The first deputy minister thinks that tracks $1-3,2-3,3-4$ and $4-5$ are necessary. The second deputy minister considers tracks 3-4 and 4-6, and the third one only track 2-3. Tracks $2-3$ and $3-4$ are necessary according to at least two deputy ministers.

| Sample Input 1 | Sample Output 1 |
| :--- | :--- | :--- |
| 6 3 2
 1 3
 2 3 2
 3 4
 6 4
 4 5
 4 1 3
 2 5
 2 6 3
 2 3 2 | |

