Problem H. Halves Not Equal

Time limit:	3 seconds
Memory limit:	512 megabytes

The king died and his gold had to be divided among his n wives. He had not left his will about the parts of his wives, so they started arguing. The *i*-th wife claimed that she should get a_i dinars.

However, it turned out that the total property of the king was only s dinars, and $s \le a_1 + a_2 + \ldots + a_n$. A wise man was called to help divide the king's inheritance. But he said that he only knew a fair way to divide gold between two persons.

The fair way is the following. Without loss of generality, let the claims of the two persons be $a_1 \leq a_2$, and let there be b dinars of gold to be divided, $0 \leq b \leq a_1 + a_2$. If $b \leq a_1$, each of the persons would get b/2 dinars. If $a_1 < b < a_2$, the first one would get $a_1/2$ dinars and the second one would get $b - a_1/2$ dinars. Finally, if $a_2 \leq b$, the first one would get $a_1/2 + (b - a_2)/2$ and the second one would get $a_2/2 + (b - a_1)/2$. Gold can be divided to any fractional part, so the amount one gets can be fractional. Note that the amount each one would get is a monotonic and continuous function of b.

Now you have been called as an even wiser person to help divide the gold among the n wives. Each wife should get no more than she claims. The division is called fair if for any two wives who claim a_i and a_j dinars of the inheritance and get c_i and c_j dinars, correspondingly, these values are the *fair way* to divide $c_i + c_j$ dinars between them.

Help the wives of the late king divide his inheritance.

Input

The first line of the input contains n — the number of wives of the king $(2 \le n \le 5000)$.

The second line contains n integers a_1, a_2, \ldots, a_n $(1 \le a_i \le 5000)$.

The third line contains an integer s $(0 \le s \le a_1 + a_2 + \ldots + a_n)$.

Output

Output n floating point numbers c_1, c_2, \ldots, c_n — the amounts of gold each wife should get in a fair division.

For each pair of wives *i* and *j* the absolute or relative difference between their parts and their parts in the *fair way* to divide $c_i + c_j$ between them must not exceed 10^{-9} . The sum of c_i must be equal to *s* with an absolute or relative error of at most 10^{-9} .

It can be proved that a fair division always exists. If there is more than one solution, output any of them.

Examples

standard input	standard output
3	3.3333333333333
10 20 30	3.33333333333333
10	3.3333333333333
3	5
10 20 30	7.5
20	7.5
3	5
10 20 30	10
30	15