Problem H. Halves Not Equal

Time limit: $\quad 3$ seconds
Memory limit: $\quad 512$ megabytes

The king died and his gold had to be divided among his n wives. He had not left his will about the parts of his wives, so they started arguing. The i-th wife claimed that she should get a_{i} dinars.
However, it turned out that the total property of the king was only s dinars, and $s \leq a_{1}+a_{2}+\ldots+a_{n}$. A wise man was called to help divide the king's inheritance. But he said that he only knew a fair way to divide gold between two persons.
The fair way is the following. Without loss of generality, let the claims of the two persons be $a_{1} \leq a_{2}$, and let there be b dinars of gold to be divided, $0 \leq b \leq a_{1}+a_{2}$. If $b \leq a_{1}$, each of the persons would get $b / 2$ dinars. If $a_{1}<b<a_{2}$, the first one would get $a_{1} / 2$ dinars and the second one would get $b-a_{1} / 2$ dinars. Finally, if $a_{2} \leq b$, the first one would get $a_{1} / 2+\left(b-a_{2}\right) / 2$ and the second one would get $a_{2} / 2+\left(b-a_{1}\right) / 2$. Gold can be divided to any fractional part, so the amount one gets can be fractional. Note that the amount each one would get is a monotonic and continuous function of b.
Now you have been called as an even wiser person to help divide the gold among the n wives. Each wife should get no more than she claims. The division is called fair if for any two wives who claim a_{i} and a_{j} dinars of the inheritance and get c_{i} and c_{j} dinars, correspondingly, these values are the fair way to divide $c_{i}+c_{j}$ dinars between them.
Help the wives of the late king divide his inheritance.

Input

The first line of the input contains n - the number of wives of the king ($2 \leq n \leq 5000$).
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 5000\right)$.
The third line contains an integer $s\left(0 \leq s \leq a_{1}+a_{2}+\ldots+a_{n}\right)$.

Output

Output n floating point numbers $c_{1}, c_{2}, \ldots, c_{n}$ - the amounts of gold each wife should get in a fair division.
For each pair of wives i and j the absolute or relative difference between their parts and their parts in the fair way to divide $c_{i}+c_{j}$ between them must not exceed 10^{-9}. The sum of c_{i} must be equal to s with an absolute or relative error of at most 10^{-9}.
It can be proved that a fair division always exists. If there is more than one solution, output any of them.

Examples

standard input	standard output
3	3030
10	3.33333333333333
3	3.33333333333333
102030	3.33333333333333
20	5
3	7.5
102030	7.5
30	5

