## Problem J. Colorful Tree

Your task is to maintain a colorful tree and process queries.
At the beginning, there is only one vertex numbered 1 with color $C$ on the tree. Then there are $q$ operations of two types coming in order:

- $0 x c d$ : Add a new vertex indexed $(n+1)$ with color $c$ to the tree, where $n$ is the current number of existing vertices. An edge connecting vertex $x$ and $(n+1)$ with length $d$ will also be added to the tree.
- $1 x c$ : Change the color of vertex $x$ to $c$.

After each operation, you should find a pair of vertices $u$ and $v(1 \leq u, v \leq n)$ with different colors in the current tree so that the distance between $u$ and $v$ is as large as possible.
The distance between two vertices $u$ and $v$ is the length of the shortest path from $u$ to $v$ on the tree.

## Input

There are multiple test cases. The first line of the input contains an integer $T$ indicating the number of test cases. For each test case:
The first line of the input contains two integers $q$ and $C\left(1 \leq q \leq 5 \times 10^{5}, 1 \leq C \leq q\right)$ indicating the number of operations and the initial color of vertex 1 .
For the following $q$ lines, each line describes an operation taking place in order with 3 or 4 integers.

- If the $i$-th line contains 4 integers $0, x_{i}, c_{i}$ and $d_{i}\left(1 \leq x_{i} \leq n, 1 \leq c_{i} \leq q, 1 \leq d \leq 10^{9}\right)$, the $i$-th operation will add a new vertex $(n+1)$ with color $c_{i}$ to the tree and connect it to vertex $x_{i}$ with an edge of length $d_{i}$.
- If the $i$-th line contains 3 integers $1, x_{i}$ and $c_{i}\left(1 \leq x_{i} \leq n, 1 \leq c_{i} \leq q\right)$, the $i$-th operation will change the color of vertex $x_{i}$ to $c_{i}$.

It's guaranteed that the sum of $q$ of all test cases will not exceed $5 \times 10^{5}$.

## Output

For each operation output the maximum distance between two vertices with different colors. If no valid pair exists output 0 instead.

## Example

|  |  |  |  | standard input |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 |  |  |  | 0 | standard output |
| 1 | 1 |  |  | 0 |  |
| 0 | 1 | 1 | 1 |  | 2 |
| 5 | 1 |  |  | 2 |  |
| 0 | 1 | 1 | 1 |  | 0 |
| 0 | 1 | 2 | 1 |  |  |
| 0 | 3 | 3 | 1 |  |  |
| 1 | 4 | 1 |  |  |  |
| 1 | 3 | 1 |  |  |  |

