

Problem E. LIS

Input file: standard input
Output file: standard output

Time limit: 7 seconds Memory limit: 256 mebibytes

You have four sequences of integers a_1, a_2, \ldots, a_n ; b_1, b_2, \ldots, b_n ; x_1, x_2, \ldots, x_n ; y_1, y_2, \ldots, y_n . Let's build a directed graph, where the edge from i to j will be in the graph if i < j and $a_i \cdot x_j + b_i \ge y_j$. You need to find the longest path in this graph.

Input

The first line of input contains one integer t ($1 \le t \le 300\,000$): the number of test cases.

The first line of each test case contains one integer n ($1 \le n \le 150\,000$): the number of integers in the sequences.

Each of the next n lines contains four integers $a_i, b_i, x_i, y_i \ (0 \le a_i, x_i \le 300\,000; 0 \le b_i, y_i \le 10^{11})$.

It is guaranteed that the total sum of n is at most $300\,000$.

Output

For each test case print one integer: the longest path in the described graph.

Example

standard input	standard output
3	3
3	1
1 1 1 1	1
2 2 2 2	
3 3 3 3	
3	
1 1 1 1	
2 2 2 10	
3 3 3 100	
1	
35 35 35 35	