Problem E. LIS

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
7 seconds
256 mebibytes

You have four sequences of integers $a_{1}, a_{2}, \ldots, a_{n} ; b_{1}, b_{2}, \ldots, b_{n} ; x_{1}, x_{2}, \ldots, x_{n} ; y_{1}, y_{2}, \ldots, y_{n}$.
Let's build a directed graph, where the edge from i to j will be in the graph if $i<j$ and $a_{i} \cdot x_{j}+b_{i} \geq y_{j}$.
You need to find the longest path in this graph.

Input

The first line of input contains one integer $t(1 \leq t \leq 300000)$: the number of test cases.
The first line of each test case contains one integer $n(1 \leq n \leq 150000)$: the number of integers in the sequences.
Each of the next n lines contains four integers $a_{i}, b_{i}, x_{i}, y_{i}\left(0 \leq a_{i}, x_{i} \leq 300000 ; 0 \leq b_{i}, y_{i} \leq 10^{11}\right)$.
It is guaranteed that the total sum of n is at most 300000 .

Output

For each test case print one integer: the longest path in the described graph.

Example

		standard input		standard output
3			3	
3			1	
1	1	1	1	
2	2	2	2	
3	3	3	3	
3				
1	1	1	1	
2	2	2	10	
3	3	3	100	
1				
35	35	35	35	

