

Problem B. Longest Increasing Subsequence

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 mebibytes

Given an increasing integer sequence $A = a_1, a_2, \dots, a_n$ of length n whose elements are all distinct, we generate another sequence B with the following algorithm.

Algo	rithm 1 Sequence Generating Algorithm	
1: f t	inction GENERATE (A)	
2:	$B \leftarrow A$	
3:	while true do	
4:	$B' \leftarrow B$	
5:	Let S be the sequence by sorting B in inc	reasing order
6:	for i in [1, length of S) do	
7:	if $s_i + 1 \neq s_{i+1}$ then	$\triangleright s_i$ is the <i>i</i> -th element in S
8:	Add $\lfloor \frac{s_i+s_{i+1}}{2} \rfloor$ to the end of B'	$\triangleright \lfloor x \rfloor$ is the largest integer not larger than x
9:	$\mathbf{if} \ B = B' \ \mathbf{then}$	
10:	break	
11:	$B \leftarrow B'$	
12:	$\mathbf{return} \ B$	

It is easy to prove that this algorithm will terminate and that elements of B are all distinct. Calculate the length of the longest increasing subsequence of B.

Input

There is only one test case in each test file.

The first line contains an integer $n \ (1 \le n \le 10^5)$ indicating the length of sequence A.

The second line contains n integers a_1, a_2, \dots, a_n $(1 \le a_1 < a_2 < \dots < a_n \le 10^{18})$ indicating the given sequence.

Output

Output one line containing one integer indicating the length of the longest increasing subsequence of B.

Example

standard input	standard output
3 1 5 20	11

Note

For the sample test case, $B = \{1, 5, 20, 3, 12, 2, 4, 8, 16, 6, 10, 14, 18, 7, 9, 11, 13, 15, 17, 19\}$. Its longest increasing subsequence is $\{1, 3, 4, 6, 7, 9, 11, 13, 15, 17, 19\}$ of length 11.