Problem B．Longest Increasing Subsequence

Input file：
Output file：
Time limit：
Memory limit：
standard input
standard output
1 second
1024 mebibytes

Given an increasing integer sequence $A=a_{1}, a_{2}, \cdots, a_{n}$ of length n whose elements are all distinct，we generate another sequence B with the following algorithm．

```
Algorithm 1 Sequence Generating Algorithm
    function Generate \((A)\)
        \(B \leftarrow A\)
        while true do
            \(B^{\prime} \leftarrow B\)
            Let \(S\) be the sequence by sorting \(B\) in increasing order
            for \(i\) in \([1\), length of \(S\) ) do
                if \(s_{i}+1 \neq s_{i+1}\) then \(\quad \triangleright s_{i}\) is the \(i\)-th element in \(S\)
                    Add \(\left\lfloor\frac{s_{i}+s_{i+1}}{2}\right\rfloor\) to the end of \(B^{\prime} \quad \triangleright\lfloor x\rfloor\) is the largest integer not larger than \(x\)
            if \(B=B^{\prime}\) then
                break
            \(B \leftarrow B^{\prime}\)
        return \(B\)
```

It is easy to prove that this algorithm will terminate and that elements of B are all distinct．Calculate the length of the longest increasing subsequence of B ．

Input

There is only one test case in each test file．
The first line contains an integer $n\left(1 \leq n \leq 10^{5}\right)$ indicating the length of sequence A ．
The second line contains n integers $a_{1}, a_{2}, \cdots, a_{n}\left(1 \leq a_{1}<a_{2}<\cdots<a_{n} \leq 10^{18}\right)$ indicating the given sequence．

Output

Output one line containing one integer indicating the length of the longest increasing subsequence of B ．

Example

| standard input | | standard output |
| :--- | :--- | :--- | :--- |
| 1 5 20 11 | | |

Note

For the sample test case，$B=\{1,5,20,3,12,2,4,8,16,6,10,14,18,7,9,11,13,15,17,19\}$ ．Its longest increasing subsequence is $\{1,3,4,6,7,9,11,13,15,17,19\}$ of length 11 ．

