## Problem A. Puzzle: X-Sums Sudoku

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 4 seconds |
| Memory limit: | 256 mebibytes |

An $n \times m$ sudoku puzzle is a grid consisting of $m \times n$ regions, and each region contains $n \times m$ cells. Hence an $n \times m$ sudoku puzzle contains $n m \times n m$ cells. Every integer from 1 to $n m$ occurs exactly once in each row, each column, and each region of an $n \times m$ sudoku puzzle.
Listing the integers in a row or a column starting from some direction as a sequence of length $n m, X$ is the first integer of the sequence, and X -sum is the sum of the first $X$ integers of the sequence.

|  | 1 | 6 | 11 | 20 | 22 | 32 | 34 | 36 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 36 |
| 8 | 3 | 4 | 1 | 2 | 7 | 8 | 5 | 6 | 29 |
| 27 | 5 | 6 | 7 | 8 | 1 | 2 | 3 | 4 | 10 |
| 34 | 7 | 8 | 5 | 6 | 3 | 4 | 1 | 2 | 3 |
| 3 | 2 | 1 | 4 | 3 | 6 | 5 | 8 | 7 | 34 |
| 10 | 4 | 3 | 2 | 1 | 8 | 7 | 6 | 5 | 27 |
| 29 | 6 | 5 | 8 | 7 | 2 | 1 | 4 | 3 | 8 |
| 36 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 1 |
|  | 36 | 34 | 32 | 22 | 20 | 11 | 6 | 1 |  |

The above figure is a $4 \times 2$ sudoku puzzle with X -sums. The 7 -th row listed from right to left is $[3,4,1,2,7,8,5,6]$ and the first integer $X$ is 3 , so the X -sum of the 7 -th row from the direction right is $8=3+4+1$.

Given two positive integers $n$ and $m$, a direction $d$, and an index $x$, you need to find the X -sum of the $x$-th row or $x$-th column from the direction $d$ in the lexicographically smallest $2^{n} \times 2^{m}$ sudoku.
Denoting $a_{i, j}$ as the $i$-th row and the $j$-th column of a sudoku puzzle $a$, a sudoku puzzle $a$ is lexicographically smaller than a sudoku puzzle $b$ of the same size if there exists $i$ and $j$ satisfying that $a_{i, j}<b_{i, j}$, that $a_{x, y}=b_{x, y}$ for all $x<i$, and that $a_{x, y}=b_{x, y}$ for all $x=i$ and $y<j$. You can find that the above is the lexicographically smallest $4 \times 2$ sudoku puzzle.

## Input

There are multiple test cases. The first line of input contains an integer $T\left(1 \leq T \leq 10^{5}\right)$, the number of test cases.

For each test case:
The only line contains two integers $n$ and $m(1 \leq n, m \leq 30)$, a string $d$, and an integer $x\left(1 \leq x \leq 2^{n+m}\right)$. Here, $2^{n} \times 2^{m}$ is the size of the sudoku puzzle; $d$ is the direction of X-sum, and it is one of "left", "right", "top", and "bottom"; $x$ is the index of a row or a column.

## Output

For each test case:
Output an integer: the X-sum of the $x$-th row or $x$-th column from the direction $d$ in the lexicographically smallest $2^{n} \times 2^{m}$ sudoku.
Note that the answer may exceed $2^{64}-1$. Consider using __int128_t in C++, BigInteger in Java or Kotlin, or int in Python.

## Examples

| standard input | standard output |
| :---: | :---: |
| 4 <br> 21 top 1 <br> 21 bottom 2 <br> 21 left 3 <br> 21 right 4 | $\begin{aligned} & \hline 1 \\ & 34 \\ & 27 \\ & 3 \end{aligned}$ |
| 4 <br> 1119 top 1053766555 <br> 1226 top 230781535210 <br> 1410 right 8344647 <br> 730 right 70120568170 | 565741033271081135 31719572400444316026492 112693473538824 477453505821905419941 |

