Problem F. Bayan Testing

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

Let us recall a well-known problem (also called a "bayan" in Russian). You are given an array $a_{1}, a_{2}, \ldots, a_{n}$ of integers. Answer the queries: given a segment $[l, r](1 \leq l \leq r \leq n)$, check if there exist two equal elements among $a_{l}, a_{l+1}, \ldots, a_{r}$.
Please help to make good tests for this well-known problem! You are given two integers n, m, and also $2 m$ different segments $\left[l_{i}, r_{i}\right]$. Find any array $a_{1}, a_{2}, \ldots, a_{n}$ such that, for exactly m queries, the answer is positive, and for exactly m queries, the answer is negative. You should report if there is no such array.

Input

The first line contains a single integer $t\left(1 \leq t \leq 10^{5}\right)$ - the number of test cases. Description of test cases follows.

The first line of each test case contains two integers $n, m\left(2 \leq n \leq 2 \cdot 10^{5}, 1 \leq m \leq 10^{5}\right)$.
Each of the next $2 m$ lines contains two integers $l_{i}, r_{i}\left(1 \leq l_{i} \leq r_{i} \leq n\right)-$ the given segments. It is guaranteed that all segments are different.
It is guaranteed that the sum of n for all test cases does not exceed $2 \cdot 10^{5}$ and the sum of m for all test cases does not exceed 10^{5}.

Output

For each test case, print the answer to the problem.
If such an array a exists, print n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{9}\right)$. Otherwise, print a single integer -1 .
If there are several possible answers, print any one of them.

Example

standard input	standard output
3 2 1 1 1 2 2 6 2 1 3 4 6 2 4 3 5 4 3 1 2 1 1 2 2 2 3 3 3 3 4	$\begin{array}{llllll} -1 & & & & \\ 1 & 2 & 3 & 3 & 2 & 1 \end{array}$

