Problem C. Squaring the Triangle

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	256 megabytes

We sley creates a graph G that contains N vertices. For each pair of vertices $\{u, v\}$, there is a probability of $\frac{p}{q}$ that an edge exists between u and v. The probabilities are independent of each other.

Let $\Delta(G)$ denote the number of triangles in G. A triangle is a set of 3 vertices that are connected by 3 edges.

Please help Wesley find the expected value of $(\Delta(G))^2$.

Input

Line 1 contains integer T $(1 \le T \le 10^6)$, the number of cases.

T lines follow. The ith line contains integers N, p, q $(3 \le N \le 10^6, 1 \le p < q \le 10^6)$, separated by spaces.

Output

Output T lines, one line for each case.

Suppose the answer to the i^{th} case is $\frac{P}{Q}$, in lowest terms. Output $PQ^{-1} \pmod{10^9 + 7}$. That is, output a number R such that $0 \le R < 10^9 + 7$ and $P \equiv RQ \pmod{10^9 + 7}$.