Problem C. Squaring the Triangle

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
5 seconds
256 megabytes

Wesley creates a graph G that contains N vertices. For each pair of vertices $\{u, v\}$, there is a probability of $\frac{p}{q}$ that an edge exists between u and v. The probabilities are independent of each other.
Let $\Delta(G)$ denote the number of triangles in G. A triangle is a set of 3 vertices that are connected by 3 edges.
Please help Wesley find the expected value of $(\Delta(G))^{2}$.

Input

Line 1 contains integer $T\left(1 \leq T \leq 10^{6}\right)$, the number of cases.
T lines follow. The $i^{\text {th }}$ line contains integers $N, p, q\left(3 \leq N \leq 10^{6}, 1 \leq p<q \leq 10^{6}\right)$, separated by spaces.

Output

Output T lines, one line for each case.
Suppose the answer to the $i^{\text {th }}$ case is $\frac{P}{Q}$, in lowest terms. Output $P Q^{-1}\left(\bmod 10^{9}+7\right)$. That is, output a number R such that $0 \leq R<10^{9}+7$ and $P \equiv R Q\left(\bmod 10^{9}+7\right)$.

