

Problem H. Exact Subsequences

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

Consider all binary strings that have exactly n different non-empty subsequences (different by contents). Sort the strings in lexicographic order. Find the k-th such string in this order.

Input

Each test contains multiple test cases. The first line contains an integer t $(1 \le t \le 100)$ — the number of test cases. The descriptions of the t test cases follow.

The description of each test case consists of a single line with two integers n and $k \ (1 \le n, k \le 10^9)$.

Output

For each test case, if there are less than k binary strings with exactly n different non-empty subsequences, print -1 on a single line. Otherwise, print lexicographically k-th of them on the next two lines in the following format:

A non-empty binary string can be uniquely described by its first character and list of sizes of blocks of equal characters. You should print m and c on the first line, where m is the number of blocks and c is the first character. Then, on the second line, print the sizes of blocks L_1, L_2, \ldots, L_m in order.

Example

standard input	standard output
8	1 0
3 1	3
3 2	2 0
3 3	1 1
3 4	2 1
3 5	1 1
100000000 1	1 1
99824 4353	3
2129721 207087	-1
	1 0
	100000000
	11 0
	92216212711
	90
	998244353

Note

The actual strings corresponding to answers to the sample are: