Problem H. Exact Subsequences

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

Consider all binary strings that have exactly n different non-empty subsequences (different by contents). Sort the strings in lexicographic order. Find the k-th such string in this order.

Input

Each test contains multiple test cases. The first line contains an integer $t(1 \leq t \leq 100)$ - the number of test cases. The descriptions of the t test cases follow.
The description of each test case consists of a single line with two integers n and $k\left(1 \leq n, k \leq 10^{9}\right)$.

Output

For each test case, if there are less than k binary strings with exactly n different non-empty subsequences, print -1 on a single line. Otherwise, print lexicographically k-th of them on the next two lines in the following format:

A non-empty binary string can be uniquely described by its first character and list of sizes of blocks of equal characters. You should print m and c on the first line, where m is the number of blocks and c is the first character. Then, on the second line, print the sizes of blocks $L_{1}, L_{2}, \ldots, L_{m}$ in order.

Example

standard input	standard output
8	10
31	3
32	20
33	11
34	21
35	11
10000000001	11
998244353	3
2129721207087	-1
	10
	1000000000
	110
	92216212711
	90
	998244353

Note

The actual strings corresponding to answers to the sample are:
000
01
10
111
-1
000...000 (1000000000 times)

0000000001100100000011011000000010
00000000011111111100000000110000111100011111000

