Problem A. Digit Product

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
256 megabytes

Define the "digit product" $f(x)$ of a positive integer x as the product of all its digits. For example, $f(1234)=1 \times 2 \times 3 \times 4=24$, and $f(100)=1 \times 0 \times 0=0$.
Given two integers l and r, please calculate the following value:

$$
\left(\prod_{i=l}^{r} f(i)\right) \bmod \left(10^{9}+7\right)
$$

In case that you don't know what Π represents, the above expression is the same as

$$
(f(l) \times f(l+1) \times \cdots \times f(r)) \quad \bmod \left(10^{9}+7\right)
$$

Input

There are multiple test cases. The first line of the input contains an integer T (about 10^{5}), indicating the number of test cases. For each test case:
The first and only line contains two integers l and $r\left(1 \leq l \leq r \leq 10^{9}\right)$, indicating the given two integers. The integers are given without leading zeros.

Output

For each test case output one line containing one integer indicating the answer.

Example

	standard input	
2	362880	
19	standard output	
9799	367416	

Note

For the first sample test case, the answer is $9!\bmod \left(10^{9}+7\right)=362880$.
For the second sample test case, the answer is $(f(97) \times f(98) \times f(99)) \bmod \left(10^{9}+7\right)=(9 \times 7 \times 9 \times 8 \times 9 \times 9)$ $\bmod \left(10^{9}+7\right)=367416$.

