Leaves

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	64 megabytes

L has a binary tree with each leaf node u labeled a_{u}.
If we traverse the entire tree in order (left child, then right child), we can place all the leaf nodes in a sequence.
Now, L will perform the following operation exactly m times:

1. Choose a non-leaf vertex a.
2. Swap the left child and right child of vertex a.

After these operations, L wants you to determine the lexicographically minimum sequence that he can achieve.

Input

The first line of the input contains two integers n and $m\left(0 \leq m \leq \frac{n-1}{2}, n \leq 1000,2 \nmid n\right)$.
Then n lines, the i-th line starts with an integer type $\in\{1,2\}$.

- if type $=1$, then two integers $l_{i}, r_{i}\left(i<l_{i}, r_{i}\right)$, indicating the left and right child of i, respectively.
- if type $=2$, then a single integer $a_{i}\left(1 \leq a_{i} \leq 10^{9}\right)$, indicating the label of this leaf.

Output

Output a line contains $\frac{n+1}{2}$ integers, indicating the optimal sequence.

Examples

standard input	standard output
$\begin{array}{lll} \hline 3 & 0 \\ 1 & 2 & 3 \\ 2 & 1 & \\ 2 & 2 \end{array}$	12
$\begin{array}{lll} \hline 7 & 1 & \\ 1 & 2 & 3 \\ 1 & 4 & 5 \\ 1 & 6 & 7 \\ 2 & 4 & \\ 2 & 2 & \\ 2 & 3 & \\ 2 & 1 & \end{array}$	2431
$\begin{array}{\|lll} \hline 7 & 2 & \\ 1 & 2 & 3 \\ 1 & 4 & 5 \\ 1 & 6 & 7 \\ 2 & 4 & \\ 2 & 2 & \\ 2 & 3 & \\ 2 & 1 & \end{array}$	1342

