Leaves

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	64 megabytes

L has a binary tree with each leaf node u labeled a_u .

If we traverse the entire tree in order (left child, then right child), we can place all the leaf nodes in a sequence.

Now, L will perform the following operation $\mathbf{exactly}\ m$ times:

- 1. Choose a non-leaf vertex a.
- 2. Swap the left child and right child of vertex a.

After these operations, L wants you to determine the lexicographically minimum sequence that he can achieve.

Input

The first line of the input contains two integers n and m $(0 \le m \le \frac{n-1}{2}, n \le 1000, 2 \nmid n)$. Then n lines, the *i*-th line starts with an integer $type \in \{1, 2\}$.

- if type = 1, then two integers l_i, r_i $(i < l_i, r_i)$, indicating the left and right child of *i*, respectively.
- if type = 2, then a single integer $a_i (1 \le a_i \le 10^9)$, indicating the label of this leaf.

Output

Output a line contains $\frac{n+1}{2}$ integers, indicating the optimal sequence.

Examples

standard input	standard output
3 0	1 2
1 2 3	
2 1	
2 2	
7 1	2 4 3 1
1 2 3	
1 4 5	
1 6 7	
2 4	
2 2	
2 3	
2 1	
7 2	1 3 4 2
1 2 3	
1 4 5	
1 6 7	
2 4	
2 2	
2 3	
2 1	