Problem A. Distance

Input file:	standard input
Output file:	standard output
Time limit:	6 seconds
Memory limit:	1024 megabytes

There are n points on a horizontal line, labelled with 1 through n from left to right.
The distance between the i-th point and the ($i+1$)-th point is a_{i}.
For each integer k ranged from 1 to n, you are asked to select exactly k different given points on the line to maximize the sum of distances between all pairs of selected points.

Input

The input contains several test cases, and the first line contains a positive integer T indicating the number of test cases which is up to 1000 .
For each test case, the first line contains an integer n indicating the number of points, where $2 \leq n \leq 10^{5}$. The second line contains ($n-1$) positive integers $a_{1}, a_{2}, \cdots, a_{n-1}$, where $1 \leq a_{i} \leq 10^{4}$.
We guarantee that the sum of n in all test cases is up to 10^{6}.

Output

For each test case, output a line containing n integers, the i-th of which is the maximum sum of distances in case $k=i$. You should output exactly one whitespace between every two adjacent numbers and avoid any trailing whitespace in this line.

Example

standard input	standard output
1	010203448
5	
2314	

Note

The figure below describes the sample test case.

The only best selection for $k=2$ should choose the leftmost and the rightmost points, while a possible best selection for $k=3$ could contain any extra point in the middle.

