Problem A. Distance

Input file:	standard input
Output file:	standard output
Time limit:	6 seconds
Memory limit:	1024 megabytes

There are n points on a horizontal line, labelled with 1 through n from left to right.

The distance between the *i*-th point and the (i + 1)-th point is a_i .

For each integer k ranged from 1 to n, you are asked to select exactly k different given points on the line to maximize the sum of distances between all pairs of selected points.

Input

The input contains several test cases, and the first line contains a positive integer T indicating the number of test cases which is up to 1000.

For each test case, the first line contains an integer n indicating the number of points, where $2 \le n \le 10^5$.

The second line contains (n-1) positive integers $a_1, a_2, \cdots, a_{n-1}$, where $1 \le a_i \le 10^4$.

We guarantee that the sum of n in all test cases is up to 10^6 .

Output

For each test case, output a line containing n integers, the *i*-th of which is the maximum sum of distances in case k = i. You should output exactly one whitespace between every two adjacent numbers and avoid any trailing whitespace in this line.

Example

standard input	standard output
1	0 10 20 34 48
5	
2 3 1 4	

Note

The figure below describes the sample test case.

The only best selection for k = 2 should choose the leftmost and the rightmost points, while a possible best selection for k = 3 could contain any extra point in the middle.