Aho-Corasick Automaton

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 megabytes

Bobo had a tree T with $(n+1)$ nodes labeled with $0,1, \ldots, n$ rooted at node 0 . Edges were associated with characters.
Let s_{i} be the concatenation of characters from root to node i. For every i, bobo would like to find f_{i} such that $s_{f_{i}}$ was the longest proper suffix of s_{i}.
Note that $s_{0}=\epsilon$ (empty string). String u is proper suffix of v if and only if there exists a non-empty string w such that $w u=v$.

Input

The first line contains 1 integer $n\left(1 \leq n \leq 2 \times 10^{5}\right)$.
The second line contains n integers $p_{1}, p_{2}, \ldots, p_{n}$ where p_{i} denotes the parent of node $i\left(0 \leq p_{i}<i\right)$.
The third line contains n integers $c_{1}, c_{2}, \ldots, c_{n}$ where c_{i} indicates that the edge from node p_{i} to i was associated with the c_{i}-th character from the alphabet $\left(1 \leq c_{i} \leq n\right)$.
It is guaranteed that $\left(p_{i}, c_{i}\right) \neq\left(p_{j}, c_{j}\right)$ for all $i \neq j$.

Output

n integers $f_{1}, f_{2}, \ldots, f_{n}$.

Examples

	standard input		standard output
2	0	0	0
1	2		
2	1	0	1
1	1		

