Aho-Corasick Automaton

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

Bobo had a tree T with (n + 1) nodes labeled with 0, 1, ..., n rooted at node 0. Edges were associated with characters.

Let s_i be the concatenation of characters from root to node *i*. For every *i*, bobo would like to find f_i such that s_{f_i} was the longest **proper suffix** of s_i .

Note that $s_0 = \epsilon$ (empty string). String u is **proper suffix** of v if and only if there exists a non-empty string w such that wu = v.

Input

The first line contains 1 integer $n \ (1 \le n \le 2 \times 10^5)$.

The second line contains n integers p_1, p_2, \ldots, p_n where p_i denotes the parent of node $i \ (0 \le p_i < i)$.

The third line contains n integers c_1, c_2, \ldots, c_n where c_i indicates that the edge from node p_i to i was associated with the c_i -th character from the alphabet $(1 \le c_i \le n)$.

It is guaranteed that $(p_i, c_i) \neq (p_j, c_j)$ for all $i \neq j$.

Output

n integers f_1, f_2, \ldots, f_n .

Examples

standard input	standard output
2	0 0
0 0	
1 2	
2	0 1
0 1	
1 1	