Problem B. Lines

Input file: standard input
Output file: standard output

Time limit: 5 seconds Memory limit: 512 megabytes

You are given n distinct points a_1, \ldots, a_n on plane. For each pair i, j (i < j) consider line passing through the points a_i and a_j (denote it as $L_{i,j}$). $A_{i,j}$ is the angle in radians from horizontal line to $L_{i,j}$ in counterclockwise direction. $0 \le A_{i,j} < \pi$.

 $p_1, \ldots, p_{\frac{n \cdot (n-1)}{2}}$ is array of the values $A_{i,j}$ in the increasing order. Your task is to find the median of p.

Median of the array of length x is element with number $\lfloor \frac{x}{2} \rfloor + 1$ if x is odd and average of the elements with numbers $\lfloor \frac{x}{2} \rfloor$ and $\lfloor \frac{x}{2} \rfloor + 1$ in otherwise.

Input

The first line of input contains a single integer n $(2 \le n \le 10^5)$ — number of the points.

Next n lines contain the coordinates of the points.

The *i*-th of these lines contain two integers x_i and y_i ($-10^9 \le x_i, y_i \le 10^9$) — the coordinates of the a_i . It's guaranteed that the points are distinct.

Output

Print the median of the angles with absolute or relative error at most 10^{-9} .

Examples

standard input	standard output
-	_
3	1.5707963268949
0 0	
0 1	
1 0	
4	1.17809724517117
0 0	
0 1	
1 0	
1 1	
3	1.5707963267949
0 0	
0 100000000	
1 0	
3	0
0 0	
1 0	
2 0	