Problem A. Matrix Recurrence

Input file:
standard input
Output file: standard output
Time limit:
4 seconds
Memory limit: $\quad 512$ megabytes
Bobo invents a new series of matrices $M_{0}, M_{1}, \ldots M_{n}$ defined as follows:

- $M_{0}=A$,
- $M_{i}=\left(\prod_{j=c_{i}}^{i-1} M_{j}\right) \times B$.

Given $m \times m$ matrices A, B and integers $c_{1}, c_{2}, \ldots, c_{n}$, compute M_{n} under $\mathbb{Z}_{\text {mod }}$ (that is, addition and multiplication of numbers are carried out modulo mod).

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains three integers n, m and $\bmod \left(1 \leq n \leq 10^{6}, 1 \leq m \leq 5,2 \leq \bmod \leq 10^{9}\right)$.
The i-th of the next m lines contains m integers $A_{i, 1}, A_{i, 2}, \ldots, A_{i, m}$, and the i-th of the following m lines contains m integers $B_{i, 1}, B_{i, 2}, \ldots, B_{i, m}\left(0 \leq A_{i, j}, B_{i, j}<\bmod \right)$.
The last line contains n integers $c_{1}, c_{2}, \ldots, c_{n}\left(0 \leq c_{i}<i, c_{1} \leq c_{2} \leq \cdots \leq c_{n}\right)$.
It is guaranteed that the sum of n does not exceed 10^{6}.

Output

For each test case, output m lines. On the i-th line, output m integers $C_{i, 1}, C_{i, 2}, \ldots, C_{i, m}$ where $C_{i, j}=M_{n, i, j}$.

Example

	standard input		standard output	
2	2	1000000000	1	2
1	1	0	1	
0	1	1	0	
1	0	0	1	
0	1	1	1	
0	0	0	1	
2	2	2		
1	1			
0	1			
1	0			
0	1			
0	0			
5	2	100000000		
1	1			
0	1			
1	0			
0	1			
0	1	2	3	

