Prefix Mahjong

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 megabytes

A positive integer multiset s is a "Pong" if $s=\{x, x, x\}$ for some positive integer x.
A positive integer multiset s is a "Chow" if $s=\{x, x+1, x+2\}$ for some positive integer x.
A positive integer multiset s is an "Eyes" if $s=\{x, x\}$ for some positive integer x.
A positive integer sequence is a "Mahjong" if it can be divided into some (possibly zero) "Pong"s, some (possibly zero) "Chow"s, and exactly one "Eyes".
For example, sequence $s=\{1,1,4,5,1,4,4,3\}$ is a "Mahjong" because it can be divided into $\{1,1,1\}$, $\{4,5,3\},\{4,4\}$.
For each prefix of a given positive integer sequence, determine if it is a "Mahjong".

Input

Each test contains multiple test cases. The first line contains a single interger $t\left(1 \leq t \leq 10^{5}\right)$, denoting the number of test cases.

For each test case, the only line contains an integer $n\left(1 \leq n \leq 10^{5}\right)$ and the following n positive integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{9}\right)$, denoting the length of the integer sequence and the elements of the positive integer sequence, respectively.

It is guaranteed that the sum of n over all testcases does not exceed 10^{5}.

Output

For each test case, print a string consisting of ' 0 ' and ' 1 ' in one line. The i-th character is ' 1 ' if the prefix of length i is a "Mahjong"; otherwise it is ' 0 '.

Examples

standard input	standard output
```4 811451443 14 1 1 3 5 4 2 5 5 4 6 6 2 244 17 3 5 3 2 2 3 3 1 4 3 1 3 3 5 2 4 4 8 24 111114 8 6 3```	$\begin{aligned} & \hline 01000001 \\ & 01001001000001 \\ & 00000000001000001 \\ & 00000000 \end{aligned}$
$\begin{array}{lllllllll} \hline 10 & & & & & & & & \\ 2 & 1 & 1 & & & & & & \\ 3 & 1 & 1 & 1 & & & & & \\ 3 & 1 & 2 & 3 & & & & & \\ 5 & 1 & 1 & 1 & 1 & 1 & & & \\ 5 & 1 & 1 & 1 & 2 & 2 & & & \\ 5 & 1 & 1 & 1 & 2 & 3 & & & \\ 8 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 3 \\ 5 & 2 & 2 & 1 & 1 & 1 & & & \\ 5 & 3 & 2 & 1 & 1 & 1 & & & \\ 8 & 3 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{aligned} & 01 \\ & 010 \\ & 000 \\ & 01001 \\ & 01001 \\ & 01001 \\ & 01001001 \\ & 01001 \\ & 00001 \\ & 00001001 \end{aligned}$

