Boring Problem Input file: standard input Output file: standard output Time limit: 1 second Memory limit: 512 megabytes Given a string S, n strings T_1, T_2, \ldots, T_n of length m and a positive rational number sequence p of length k whose sum is 1. Each string consists of only the first k lowercase letters. Let's perform the following procedure: - 1. If there exists j $(1 \le j \le n)$ such that T_j is a substring of S, stop the procedure. - 2. Append the *i*-th lowercase letter with probability p_i to the end of S, then return to step 1. Let's define f(S;T,p) as the expected length of S when the procedure stops. It's boring to calculate f(S;T,p) for only one string S. To make the problem much harder, a string R is given. Let's denote the prefix of R of length i as R[1 ... i]. Your task is to calculate f(R[1 ... i];T,p) for $i=1,2,\cdots,|R|$. It can be proved that f(S; T, p) is a positive rational number and it can be represented as $\frac{P}{Q}$ with gcd(P,Q) = 1. It is guaranteed that $Q \not\equiv 0 \pmod{(10^9 + 7)}$ for all strings S under the given T and p in the input. You should print the value of $PQ^{-1} \pmod{(10^9 + 7)}$. ## Input The first line contains three positive integers n, m and k $(1 \le n \le 100, n \times m \le 10000, 1 \le k \le 26)$. The second line contains k positive integers $p'_1, p'_2 \cdots, p'_k$. It is guaranteed that $p'_1 + p'_2 + \cdots + p'_k = 100$ and the probability p_i equals to $\frac{p'_i}{100}$. The *i*-th line of the following n lines contains a string T_i of length m. The last line contains a string R ($1 \le |R| \le 10000$). It is guaranteed each string consists of only the first k lowercase letters and $Q \not\equiv 0 \pmod{(10^9+7)}$ when representing f(S;T,p) as $\frac{P}{Q}$ with $\gcd(P,Q)=1$ for all strings S under the given T and p in the input. ## Output Ouput |R| lines. The *i*-th line contains an integer representing the value of f(R[1 ... i]; T, p). ## Examples | standard input | standard output | |--|--| | 2 2 2
50 50
aa
bb
ababaa | 3
4
5
6
7
6 | | 3 3 3 25 25 50 abc bac cab ababbabbcaaa | 13
333333343
333333344
333333345
17
3333333347
3333333348
20
333333358
6666666692
23
24 | | 4 4 4 10 20 30 40 abcb cabc abbb cccc ababacabaabcca | 146386692
32395942
146386694
32395944
146386696
851050282
242422295
512573933
146386700
146386701
32395951
66073407
572924730
242422302 |