## Bulldozer (Solution)

In the following, we consider rock as gold of negative value.

## Subtask 1

First, we consider the case where all spots lie on a line (Subtask 1). We sort the spots according to their $x$-coordinates. Let $W_{1}, W_{2}, \ldots, W_{N}$ be the value of gold obtained at each spot, in order.

We put $S_{0}=0$ and $S_{i}=W_{1}+W_{2}+\cdots+W_{i}$. Then the maximum profit is $\max \left\{S_{j}-S_{i} \mid 0 \leqq i<j \leqq N\right\}$.

## Subtask 2

We consider the general case. If we choose the slope $a$ of a line, by taking the projections of all spots to a line of slope $-1 / a$, the problem is reduced to the case where all spots lie on a line. (The case of a line parallel to the $y$-axis is the same as the case of a line of sufficiently large slope.)

Let us consider how the order of spots are changed when $a$ varies. If we change the value of $a$ from $-\infty$ to $+\infty$, the order is changed only when $a X_{i}-Y_{i}=a X_{j}-Y_{j}$ is satisfied for some $i \neq j$.

Therefore, since there are at most $N(N-1) / 2$ candidates of $a$, we can solve Subtask 2.

## Subtasks 3-5

We consider Subtask 3. Note that, if we change the value of $a$ from $-\infty$ to $+\infty$, when the order is changed, only two adjacent spots are interchanged at one moment. Hence this subtask is solved if we can manage the maximum, the minimum, and $\max \left\{S_{j}-S_{i} \mid j>i\right\}$ of the intervals of the sequence $\left\{S_{i}\right\}_{0 \leq i \leq N}$. We can implement it using a segment tree.

We can solve Subtask 4 if we refer the segment tree for $\max \left\{S_{j}-S_{i} \mid 0 \leq i<j \leq N\right\}$ only when all changes of the same slopes are done.

If more than three points lie on a line, we can similarly solve the task if we devise the order to change the spots. Then we get full score.

