
41st Petrozavodsk Programming Camp, Summer 2021
Day 3: IQ test by kefaa2, antontrygubO o, and gepardo, Wednesday, August 25, 2021

Problem Tutorial: “Intellectual Implementation”
Let’s make a graph where we will connect two indices if corresponding rectangles intersect. Then, we need to
compute number of anti-triangles (i. e. triples of vertices that are pairwise not connected with an edge) in this
graph. Instead of doing this we will do three things:

1. Compute the degree of each vertex (for each rectangle we need to know how many other rectangles does it
interesect).

2. Compute the number of triangles (the number of triples of rectangles which intersect pairwise).

3. Compute the answer to the original problem from this two values.

We will do 1 using sweepline. We will maintain a structure which helps us to answer the following queries:

1. Add a segment to the set.

2. Delete a segment from the set.

3. For given segment, calculate how many segments from the set it intersects.

This structure can be easily implemented using segment tree or Fenwick tree, since we can notice that answer to
the third query for segment [𝑙, 𝑟] is equal to number of segments in a set minus number of segments with right
border ¡ 𝑙 minus number of segments with left border ¿ 𝑟. So we maintain two segment trees (or Fenwick trees) for
left and right borders, then queries are equivalent to point update and range query.

After this, let’s sort our rectangles by 𝑙. Then, we will solve two independent problems:

1.1) Count the number of such 𝑗 that 𝑙𝑖 > 𝑙𝑗 and rectangle 𝑖 intersects with rectangle 𝑗.

1.2) Count the number of such 𝑗 that 𝑙𝑖 < 𝑙𝑗 and rectangle 𝑖 intersects with rectangle 𝑗.

Sum of answers for 1.1 and 1.2 will be degree of vertex 𝑖.

Note that for 1.1, for rectangle 𝑗, to intersect with 𝑖, we must have 𝑙𝑖 < 𝑙𝑗 < 𝑟𝑖 and [𝑑𝑖, 𝑢𝑖] intersecting with [𝑑𝑗 , 𝑢𝑗 ].
So we can iterate in the increasing order of 𝑥 coordinate, add [𝑑𝑖, 𝑢𝑖] to set at the moment 𝑙𝑖. Then answer for 𝑖
will be the number of segments intersecting with [𝑑𝑖, 𝑢𝑖] at the moment 𝑟𝑖 minus number of segments intersecting
with [𝑑𝑖, 𝑢𝑖] at the moment 𝑙𝑖.

1.2 is done in a similar way, but we should add segment to the set at the moment 𝑙𝑖 and delete it at the moment
𝑟𝑖 (since in this case we have the condition 𝑙𝑗 < 𝑙𝑖 < 𝑟𝑗).

To do 3 let’s compute the following number — number of triples (𝑥, 𝑦, 𝑧) such that (𝑥, 𝑦) and (𝑥, 𝑧) are both
connected or both not connected with an edge. Here we suppose that order of 𝑦 and 𝑧 doesn’t matter. We can
count it in two ways. If we fix 𝑥 and suppose that 𝑑𝑒𝑔𝑥 = 𝑑 than we should add

(︀
𝑑
2

)︀
+
(︀
𝑛−1−𝑑

2

)︀
. On the other hand,

we can notice that triangle and anti-triangle triples contribute 3 to this value and all other triples contribute 1.
Since you know total number of triples(namely,

(︀
𝑛
3

)︀
), you can find the final answer.

Now we are left with 2. For this, let’s also do sweepline over 𝑥 coordinate. Suppose that we are able to answer the
following queries:

1. Add a segment to the set.

2. Delete segment from the set.

3. Find how many triples of segments intersect.

If we will be able to do this, subproblem 2 will be also solved easily — we will just iterate over 𝑥 coordinate and
for rectangle with X-segment [𝑙, 𝑟] we will add its Y-segment [𝑑, 𝑢] to the set at moment 𝑙 and delete it from the
set at moment 𝑟. Also, we will calculate the difference of number of intersecting segments before adding it and
after adding it. Sum of this differences over all the rectangles will be equal to total number of intersecting triples
of rectangles(basically each intersecting triple will be taken into account for the rectangle with the biggest value of
𝑙). So we are left with the problem of processing these queries.

Page 16 of 21



41st Petrozavodsk Programming Camp, Summer 2021
Day 3: IQ test by kefaa2, antontrygubO o, and gepardo, Wednesday, August 25, 2021

To do this, let’s suppose that we will maintain two arrays — 𝑣𝑎𝑙 and 𝑣𝑎𝑙′. 𝑣𝑎𝑙[𝑖] will be equal to number of segments
[𝑙, 𝑟] in a set, such that 𝑙 ≤ 𝑖 ≤ 𝑟. 𝑣𝑎𝑙′[𝑖] is similar, but we will have 𝑙 ≤ 𝑖 < 𝑟. Then, answer to 3 is equal to∑︀(︀

𝑣𝑎𝑙[𝑖]
3

)︀
−
(︀
𝑣𝑎𝑙′[𝑖]

3

)︀
.

Then, our following is equivalent, to the following one

1. Do range add query (in our problem, it’s either +1 or −1 but it doesn’t matter).

2. Calculate
∑︀(︀

𝑣𝑎𝑙[𝑖]
3

)︀
.

To solve this final problem, we will maintain a segment tree. In each node we will store
∑︀(︀

𝑣𝑎𝑙[𝑖]
𝑧

)︀
, for 0 ≤ 𝑧 ≤ 3.

The only thing that we need to do, is to be able to do lazy updates, so we should be able to compute
∑︀(︀

𝑣𝑎𝑙[𝑖]+𝑙𝑎𝑧𝑦
𝑡

)︀
.

We can do this using Vandermonde’s Identity:

(︂
𝑣𝑎𝑙[𝑖] + 𝑙𝑎𝑧𝑦

𝑡

)︂
=

𝑡∑︁
𝑘=0

(︂
𝑣𝑎𝑙[𝑖]

𝑘

)︂
·
(︂
𝑡

𝑘

)︂
.

It’s also nice that it works even for negative values of lazy (if we expand the definition of binomial coefficients).

So, we can do lazy propagation operation in constant time. Merge operation is also trivial.

Finally, problem is solved in 𝑂(𝑛𝑙𝑜𝑔(𝑛)) time (with pretty high constant though).

One last note is that actually you can solve queries with maintaining
∑︀(︀

𝑣𝑎𝑙[𝑖]
𝑧

)︀
, for 0 ≤ 𝑧 ≤ 2 (since you just

need to calculate how many pairs of segments intersect with [𝑙, 𝑟]). If you maintain
∑︀(︀

𝑣𝑎𝑙[𝑖]
3

)︀
, be aware of integer

overflow.

Page 17 of 21


