
Climbers – solution

Author: Cătălin Frâncu

Without changing the answer to the problem, we can collapse sequences of three or more

sorted altitudes, keeping only the first and the last one. For example, we can shorten

0 1 3 7 5 2 8 5 0 to just 0 7 2 8 0. For the rest of this document, we will assume

that altitudes are strictly zigzagging.

Let nodes be the inflection points of the mountain range, numbered from 1 to n, having

altitudes h1, . . . , hn, and let segment s refer to the slope between nodes s and s + 1,

including its endpoints. (We will sometimes refer to segment n to mean just the node n

itself.)

Notice that any optimal solution implies that climbers change direction only when at

least one of them is in a node. Indeed, if they both stop mid-slope, then there is no way

to go but back, which simply increases the cost with no benefit.

Therefore, it suffices to explore climber states of the form (x, y), meaning that one of

the climbers (not necessarily Alice) is at node x and the other is on segment y.

For example, for the landscape in Figure 1 the optimal solution passes through the states

(1, 7)→ (2, 6)→ (3, 6)→ (6, 3)→ (5, 3)→ (4, 4). State (6, 3) is shown explicitly.

Note that not all states (x, y) are defined, only those for which segment y spans altitude

hx. Furthermore, if state (x, y) is defined, then it uniquely identifies the climbers’ posi-

tions, since segment y cannot span altitude hx more than once. It follows that there are

at most n2 states.

Thus, we can view the landscape as a weighted graph where

• vertices correspond to climber states;

• edges correspond to movements between states;

• the weight of an edge is the vertical distance between its adjacent states;

• the climbers start in state (1, n);

1



nodes

altitudes

1 2 3 4 5 6 7
0

1

2

3

4

5

6
state (6,3)

Figure 1: A sample landscape.

• the climbers wish to arrive at the nearest state (x, x).

A vertex (x, y) in this graph can have a degree of:

• 2 if hy < hx < hy+1. In this case, the climber at x can move forward and back,

while the climber on y only has one way to go.

• 4 if hx = hy or hx = hy+1. In this case, both climbers can move forward or back.

• 1 for state (1, n), since both climbers can only move up.

• 1 for states of the form (x, x), since the climbers can only part ways and go back

where they came from.

(For completeness, note that there are an odd number of altitudes, since they are strictly

zigzagging. Therefore, there is an even number of nodes of degree 1, so the sum of all

degrees is even as expected.)

In conclusion, we can use Dijkstra’s algorithm to find the shortest path from vertex (1, n)

to any vertex (x, x). Enumerating the edges of the graph (i. e. finding all the climbers’

movements from a given state) is tricky, but doable. This requires O(n2 log n) time and

O(n2) space.

As an optimization, we could avoid inserting vertices of degree 2 into the priority queue

in Dijkstra’s algorithm. When we encounter such a vertex, we keep following it to a

vertex of degree 4 or 1. This cuts the running time significantly, but is not required for

the maximum score.

2



There will always exist a solution. The connected component containing the initial state

must contain at least another vertex of degree 1, which means that starting in the initial

state and following any simple path must lead us to a final state.

Special case: all altitudes are distinct

When all the altitudes are distinct, there are no vertices of degree 4 in the graph model

above. This means that the path from (1, n) to (x, x) passes only through nodes of

degree 2. Thus, we can blindly walk from state to state, taking care not to go back to

the previous state, and we will eventually arrive at the final state (which is also unique,

since there is a single highest peak). This requires O(n2) time and O(n) space.

Special case: n×H ≤ 40, 000

We feel that the trickiest part of implementing the program is enumerating the transitions

between states. When n×H is small, we can avoid this complication. Let us interpolate

the altitudes from hx to hx+1 on every segment x. For example, 0 3 1 4 0 becomes

0 1 2 3 2 1 2 3 4 3 2 1 0.

There will be at most n×H nodes in this interpolated landscape and consecutive altitudes

will differ by exactly one. State transitions become a lot easier to define, as climbers can

only move from (x, y) to (x ± 1, y ± 1) as long as the altitudes match. Also, all edges

in the equivalent graph have a weight of 1, so we can use a breadth-first search instead

of Dijkstra’s algorithm. This only requires one bit per vertex to keep track of visited

vertices, as well as a queue of active nodes, which will be very small in practice.

The running time is O(n2H2).

3


