
Password – solution

Author: Costin Oncescu

There are numerous approaches available; here is a handful of them.

Distinct symbols (S + N(N−1)/2 queries)

Since the symbols are distinct, N ≤ S ≤ 26. We can issue S queries each containing

just one symbol, in order to determine which symbols appear in the password. Let the

alphabet used be a1, a2, . . . , aN . Next, we issue (N choose 2) queries of the form aiaj for

all i < j. The answer can be 1, which means that aj appears before ai in the password,

or 2, which means that ai appears before aj. This gives us a total order of the symbols;

the password consists of the letters in this order.

“It doesn’t get more exhaustive than this” (O(N 2 · S) queries)

Start with an empty string and insert symbols one by one. To perform the k-th insertion,

try every symbol at every position in the existing string, until we get an answer of k + 1.

To simplify the code, for every insertion start at the end and work backwards. This

makes it easier to shift existing characters to the right one by one.

In theory this makes N(N−1)/2 · S queries, but it performs better in practice.

“More X’s... more X’s... too many X’s!” (N · S queries)

Insert all occurrences of one symbol before moving on to the next symbol. For a working

string Q and a new symbol X, issue queries as follows: at every position in Q, insert one

X, then 2 X’s, then 3 X’s, while the answer is equal to the new |Q|. When the answer

stops increasing with |Q|, undo the last insertion and move on to the next position. Table

1 gives an example.

1

N = 5, S = 3, password = bacca

a → 1

aa → 2

aaa → 2 2 < 3, so there are only 2 a’s.

baa → 3

bbaa → 1 No values of 4 from now on, so there are no more b’s.

baba → 2

baab → 3

cbaa → 1

bcaa → 3

baca → 4 First value of 4 we encountered, so there is a c here.

bacca → 5 Terminates naturally once the last symbol is inserted.

Table 1: A possible interaction.

For a given X with frequency fX , this algorithm will issue at most |Q|+ fX + 1 queries.

Indeed, there will be fX “correct” queries that guess a new occurrence and |Q|+1 “wrong”

queries, one for each gap in Q.

At any given time, |Q| is the sum of frequencies of previously explored symbols. It follows

that the worst case is N − S + 1 occurrences of a followed by each of the other symbols

once. In this case, the algorithm performs just under N · S queries, because |Q| will be

almost N the entire time we evaluate the last S − 1 symbols.

“XXXXXXXXX marks the spot” (N · S queries)

As before, insert all occurrences of one symbol before moving on to the next symbol. For a

working string Q and a new symbol X, issue |Q|+1 queries as follows: take each prefix of

Q and pad it with symbols X to length N . Taking differences between successive answers

gives the number of X’s between existing symbols in Q. Table 2 gives an example.

Again, the worst case is N − S + 1 occurrences of a and one each of the other symbols.

This ensures that |Q| grows as quickly as possible at the beginning. Working out the

math yields a number slightly less than N · S.

“Carry that weight a long time” (N ·S/2 queries)

The worst case of the previous solutions happens when they begin with a symbol with

high frequency. Since |Q| is the sum of frequencies of previously explored symbols, any

frequent symbol we encounter early will carry towards the cost of all future symbols.

2

N = 5, S = 3, password = bacca

aaaaa → 2 Now we know there are two a’s.

aabbb → 2 2 is for aa, so there are no b’s at the end.

abbbb → 1 1 is for a, so there are no b’s here either.

bbbbb → 1 Now we know the string of all a’s and b’s is baa.

baacc → 3 3 is for baa, so there are no c’s at the end.

baccc → 4 2 is for ba, so there must be two c’s here.

bcccc → 3

ccccc → 2

bacca → 5 Print the correct password at the end.

Table 2: A possible interaction.

We can obviously alleviate this by processing symbols in increasing order of frequency.

Start with the easier symbols and save the hard ones for the end. The worst case for this

approach is when all frequencies are equal, f = N/S. Then the cost for the k-th distinct

symbol is 1 + (k − 1)f . The total number of queries is:

S∑
k=1

(1 + (k − 1)f) = S +
S(S − 1)

2
f = S +

N(S − 1)

2

To find the frequencies of each symbol, we need to run an additional S − 1 queries of

the form aaa . . . a, bbb . . . b and so on. The frequency of the last symbol can be found by

subtracting the previous S − 1 values from N .

“Out of many, one” (S + N log2 S queries)

This solution is inspired by the problem of merging k sorted arrays. As before, use S− 1

queries to find the frequencies of each symbol. Next, build S strings, one for each symbol:

one containing all the a’s, another containing all the b’s and so on. Then, repeatedly,

take the two shortest strings and merge them, until we are left with only one string.

Merging means that we start with two strings, each of which contains all the occurrences

of a different set of symbols, in the same order as they appear in the password. We wish

to obtain one string containing all the occurrences of the union of the two sets, again in

the correct order. If we can do this, then after S−1 merges there will be only one string,

containing all the occurrences of every symbol in the correct order – that is, the password

itself.

So how do we do this? Let us work out an example. Let our two strings be A = abacaba

and B = defe, containing all the occurrences of a − c and d − f respectively. Let the

3

strings left to merge query result merged string so far

abacaba defe adefe 5 a

bacaba defe abdefe 6 ab

acaba defe abadefe 6 abd

acaba efe abdaefe 7 abda

caba efe abdacefe 8 abdac

aba efe abdacaefe 7 abdace

aba fe abdaceafe 9 abdacea

ba fe abdaceabfe 8 abdaceaf

ba e abdaceafbe 10 abdaceafb

a e abdaceafbae 11 abdaceafba

– e – – abdaceafbae

Table 3: Merging two strings.

password be abxxxdaceyyyyafbzzzae (for clarity, we have deemphasized symbols outside

the a− f range).

We begin by issuing the query adefe. If the answer is 5, then we know that the first a

appears before d; otherwise d appears before the first a. In our case the answer is indeed

5, so we know that the merged string begins with a. Next we issue the query abdefe.

The answer is 6, so ab must come before defe. The next query if abadefe. Here the

answer is 3, not 7, so we know that aba does not come before defe; therefore, the first

letters must be abd.

In general, queries will consist of (a) the string merged so far, (b) the first unmerged

character of A and (c) the unmerged portion of B. If the answer is equal to the length of

the query, we merge the next character from A. Otherwise, we merge the next character

from B. Merging terminates when we reach the end of either string, after which we copy

the remaining portion of the other string. Table 3 summarizes the entire run for this

example.

Note that merging A and B makes at most |A| + |B| queries, one per symbol merged.

Suppose we simply merged S/2 pairs of strings regardless of their length. This would

make at most N queries in total and cut the number of strings in half. Since there are

logS iterations, this approach would make N logS queries in total. Merging the shortest

strings performs no worse, but it can be much better in degenerate cases. For example,

when the strings have length 1, 2, 4, 8, ..., our approach would make just 4N queries.

4

“Nothing left on the right side” (S + N(1 + log2 S) queries)

This solution is based on the quickselect algorithm. Once again, use S− 1 queries to find

the frequencies of each symbol. Now we know the composition of the password, but not

the order. Choose a symbol at random (a “pivot”). We wish to

1. find the frequencies of symbols to the left and right of it;

2. solve the subproblem on the left side recursively;

3. output the pivot itself;

4. solve the subproblem on the right side recursively.

If the subproblem contains S ′ distinct symbols (S ′ will get smaller and smaller as we

recurse into smaller subproblems), then finding the frequencies can be done in S ′ − 1

queries. We do not need to run a query for the pivot. If there are 10 copies of it and we

randomly chose the 7th, then we automatically know that there are 6 more copies of it

on the left and 3 on the right.

How do we build these queries? Assuming we chose the k-th occurrence of X, and if we

wish to count the number of Y ’s to the left of X, then our query must consist of:

• all occurrences of X to the left of the current subproblem;

• k more occurrences of X;

• all the occurrences of Y except those to the left of the current subproblem (it is

important not to include too many symbols or we may exceed N);

The answer will account for

• the number of X’s to the left of the current subproblem;

• k more occurrences of X;

• the number of Y ’s right of the pivot in the current subproblem;

• the number of Y ’s to the right of the current subproblem.

If we choose our data structures carefully, we can compute the number of Y ’s left of the

pivot by difference.

5

The base cases of this recursion are (a) no symbols left, when we simply return, and (b)

a single symbol X with k occurrences, when we output k copies of X and return.

Computing the total effort is nontrivial, but we can get a good estimate as follows. For a

subproblem of length N ′ containing S ′ distinct symbols, the expected number of queries

performed is

Q(N ′) = S ′ − 1 + 2 ·Q(N ′/2)

Let us split this recursion tree into a top part, where the subproblems have length N ′ >=

S, and a bottom part, where N ′ < S. Let p be the first level in the bottom part (where

the original problem has level 0). Then

p =

⌈
log2

N

S

⌉
The top part has p levels and 1 + 2 + · · · + 2p−1 < 2p subproblems. Each of these

subproblems is long enough that it can still have S distinct symbols (although in practice

the numbers decrease quickly). Thus, the total work on these levels is at most

(S − 1) · 2p = (S − 1) · 2dlog2
N
S e ≈ (S − 1)

N

S
< N

The bottom part starts with 2p subproblems of length at most S. The next level has 2p+1

subproblems of length at most S/2, and so on. It follows that there are log2 S levels. Each

of these subproblems require effort proportional to their length (because there cannot be

more distinct symbols than the length of the string). Thus, the total work on each level

is 2p · S and the total work on the bottom part of the tree is at most

2p · S log2 S = 2dlog2
N
S e · S · log2 S ≈ N · log2 S

Adding up the initial frequency count and the work for the top and bottom parts of the

tree, we get a total cost of S + N(1 + log2 S) queries.

6

