
Colors – solution

Author: Costin Oncescu

We begin with some general observations about the problem.

Proposition 1. The values of a never increase.

Proof. The operation au = min(au, av) can only make au smaller, never larger.

Proposition 2. If initially au < bu for any node u, then there is no solution.

Proof. This follows directly from Proposition 1.

Proposition 3. Any constructive algorithm may never make au < bu.

Proof. If it any point we operate on au and make it smaller than bu, then we find ourselves

in the conditions of Proposition 2. Obviously this has no importance if there is no solution

to begin with, but we cannot know that beforehand.

Proposition 4. When propagating color c from node u to node v, we may only pass

through nodes w having aw ≥ c and bw ≤ c.

Proof. If aw < c, then we simply cannot assign color c to node w because the min

operation would select aw, not c. If bw > c, then by assigning color c to node w we would

be violating Proposition 3.

This is the crux of the solution: propagating a color c from nodes u that have it (au = c)

to nodes v that need it (bv = c).

Definition 1. A node v can be satisfied if there exists a node u with au = bv and a path

u→ v such that all nodes w on the path have aw ≥ bv and bw ≤ bv. Node u is said to be

a source node for v.

Note that nodes v having av = bv are trivially satisfied. The path contains only node v

itself and no operations are necessary.

1



Definition 2. A color c can be satisfied if every node v having bv = c can be satisfied.

Proposition 5. Coloring a can be changed into b if and only if every node can be satisfied.

Proof. The negative half is easy: If there exists a node v that cannot be satisfied, then

either (a) we will not be able to change av into bv or (b) we can only change it by making

aw = bv < bw somewhere along the way, thus violating Proposition 3.

To prove the positive, constructive half, we remark that propagating colors changes the

graph. By making the value of aw smaller for an arbitrary node w while satisfying a node

v, we are making it harder to obey the condition aw ≥ bv′ later when we are attempting

to satisfy another node v′.

Fortunately, the fix is simple. We consider colors in decreasing order, from the largest

value in b to the smallest. Suppose at some moment we are propagating the value c. This

may affect some nodes w having aw > c by making aw = c (“the change”). However, this

will not be a problem when propagating a future color d < c. There are three possible

cases:

1. Node w was accessible before the change, meaning aw ≥ d and bw ≤ d. After the

change, aw = c > d and bw is unchanged, so node w is still accessible after the

change.

2. Node w was inaccessible before the change because aw < d. Since the change further

decreased aw to c, node w is still inaccessible after the change.

3. Node w was inaccessible before the change because bw > d. Since the change did

not alter bw, only aw, node w is still inaccessible after the change.

Next we discuss how to implement this for the various graph types given in the statement.

Complete graph

In a complete graph the path u → v is simply the edge (u, v). It is never necessary

to visit intermediate nodes because changing colors can only make the problem harder,

never easier.

Thus node v can be satisfied if there exists a node u with au = bv. Globally, the problem

admits a solution if:

1. au ≥ bu for all u;

2



2. b ∈ a (we can view a and b as sets by considering their distinct elements).

The time complexity is O(N2) because we still need to read past the edges of the graph

in order to get to the next test case. Deciding the satisfiability itself takes O(N) time.

Chain (1-dimensional array)

When all the nodes lie on a chain, we will view the graph as a pair of arrays a and b and

paths as ranges in those sequences. We can satisfy an index i if

(a) There exists an index l ≤ i such that ak ≥ ai and bk ≤ bi for all l ≤ k < i

(informally, we propagate the color from the left), or

(b) There exists an index r ≥ i such that ak ≥ ai and bk ≤ bi for all r ≥ k > i

(informally, we propagate the color from the right).

We explain how to handle the left side. One approach that is easy to formulate uses

range minimum/maximum queries. We store pointers from each i to the closest l ≤ i

having al = bi. Then we can satisfy index i from the left if

1. min(al, al+1, . . . , ai) ≥ bi (or we simply won’t be able to propagate color bi) and

2. max(bl, bl+1, . . . , bi) ≤ bi (or propagating color bi will make some indices unsatisfi-

able).

The running time is O(N logN) with a practical implementation of range minimum

queries. This can be improved to O(N) using sorted stacks.

Star graph

As before, we assume that au ≥ bu for all nodes and that all values in b also appear in a.

Then the root r is satisfiable because we can propagate br along a direct edge if needed.

Furthermore, there are only three ways to satisfy a leaf v.

1. If bv = av then nothing needs to be done.

2. If bv = ar then we propagate bv from the root.

3. If bv = au for some v then the path u → v passes through r and v is satisfiable if

ar ≥ bv and br ≤ bv.

3



In theory, case (3) can mean that ar and br must have the maximum and minimum values

in b. Checking this condition explicitly is not necessary and can be tricky in practice.

For example, the nodes having the minimum value in b may already be satisfied (case 1

above).

Small tree

Trees have M = N −1 edges. When the sum of N2 is small, an O(MN) approach works.

Please see the section “Small graph” below.

Permutation tree

If b is a permutation of a, then for every node v there exists exactly one possible source

node u and a single path u→ v. For u to be a source node, we must check that:

1. min
w∈u→v

aw ≥ bv and

2. max
w∈u→v

bw ≤ bv.

Thus, the solution reduces to path minimum and maximum queries. We discuss the

minimum case. One approach is to choose an arbitrary root r and define

• A(u, k) as the 2k-th closest ancestor of u for k ≥ 0;

• B(u, k) as the minimum value of a over the closest 2k ancestors of u, including u

itself.

Since k ≤ logN , we need O(N logN) space to store A and B. We can also compute

them in O(N logN), specifically

• A(u, k + 1) = A(A(u, k), k)

• B(u, k + 1) = min(B(u, k), B(A(u, k), k))

We can then compute the lowest common ancestor l for every pair (u, v) and compute

the path minimum by considering the paths (u, l) and (v, l). In turn, the answer for each

path can be computed by considering two overlapping chains whose size is a power of 2

and which cover the path completely.

The time and space complexity is O(N logN).

4



Small graph

For small graphs, an O(MN) approach is sufficient. Therefore, we can afford to run up

to N depth-first searches, one from each node v. Each search runs in O(M + N) and

visits only nodes w having aw ≥ bv and bw ≤ bv. Node v is satisfiable if and only if the

search encounters any nodes with aw = bv.

General graph

When M � N , we reconsider the problem in terms of dynamic connectivity. Let G =

(V,E) be the initial graph. Let c ∈ b be a color. Let Gc = (Vc, Ec) be the graph induced

by the set of valid nodes while trying to satisfy color c. Specifically,

• Vc = {u ∈ V | au ≥ c and bu ≤ c}

• Ec = {(u, v) ∈ E | u, v ∈ Vc}

Suppose we construct a disjoint-set forest for Gc. Then color c is satisfiable if for every

node v having bv = c there exists a node u having au = c in the same connected component

as c.

Now let us consider the next color in decreasing order, d < c. In similar fashion we wish

to obtain Gd = (Vd, Ed), build its disjoint-set forest and decide the satisfiability of d.

How can we achieve this? Simply rebuilding the forest from scratch takes O(Mα(N)),

yielding a slow running time of O(MNα(N)) for all the colors.

To improve upon this, let us consider what changes between Vc and Vd:

• Nodes having au = d are added to the graph.

• Nodes having bu = c are removed from the graph.

Interestingly, each node (along with its incident edges) is added and removed from the

graph exactly once. The key is to build the forest of d from the forest of c, or some other

forest we have previously built, to save time. Thus, we have reduced the problem to

offline dynamic connectivity, where we maintain a forest throughout the entire algorithm

and perform M edge additions and M edge removals on it. This can be done theoretically

in O(logN) per operation, but the implementation is impractical here. We present two

different approaches, achieving O(log2N) and O(α(N)
√
M) per operation respectively.

5



Disjoint-set forests with undo support

Consider an edge (u, v) with its initial values au, av, bu, bv. Suppose that, at some point

during the algorithm, we propagate a value c across the edge. What can we say about c?

First, c ≤ au and c ≤ av because we started with au and av and values never increase.

Second, c ≥ bu and c ≥ bv, otherwise we would violate Proposition 3. Thus, we can

introduce two notations t1 and t2 and say that

t1 , max(bu, bv) ≤ c ≤ min(au, av) , t2

The letter t is not accidental. We can think of colors as moments of time and say that edge

(u, v) is “in existence” between times t1 and t2 inclusively. We do this for all edges. Now,

in order to satisfy a color c, we wish to address the question: what edges are in existence

at time c? Then we move to the next color, update the edge list and its corresponding

disjoint-set forest, and repeat the question.

For this purpose, we construct a segment tree over the N time moments with all the

intervals [t1, t2]. For every interval we also store the originating edge (u, v). Then we

traverse the tree in depth-first order. When entering a node, we add all the edges stored

in that node to the disjoint-set forest. We use stacks to keep the history of the forest

data, specifically each node’s rank and parent. This allows us, when exiting a node, to

remove the edges from the disjoint-set forest and revert to the state before entering the

node.

Finally, leaves in the segment tree correspond to single moments of time t, and at those

leaves we query the disjoint-set forest to decide if the color t is satisfiable.

The use of stacks makes it impractical to use path compression in our disjoint-set forest.

We still perform unions by rank, which achieves O(logN) time per operation.

Thus, there are M edges in the segment tree, each potentially occurring in O(logN)

nodes, and to process each occurrence we perform O(logN) operation on the disjoint-set

forest. The overall complexity is O(M log2N).

Square root decomposition

Suppose we intend to build from scratch the disjoint-set forest for a color c. However, if

the number of nodes having au = c or bu = c is small, then we have expended O(Mα(N))

effort for little benefit.

Instead, let us build a smaller forest, but one that we can keep using for a longer time.

Specifically, find a color d ≤ c such that there are O(
√
M) edges appearing and disap-

6



pearing in all the transitions from Ec to Ed. We call the interval [d, c] a block. Next,

build a disjoint-set forest F using all the edges in Ec ∩ · · · ∩ Ed, namely edges between

nodes u having au ≥ c and bu ≤ d. F is relevant to all the satisfiability checks for colors

d through c. Make a copy of F so we can reuse it multiple times.

In order to answer the satisfiability question for a color e ∈ [d, c], we augment F with

all the relevant edges, specifically all those between nodes u having au ≥ e and bu ≤ e.

Due to our choice of d, there are O(
√
M) edges to add and O(

√
M) nodes in whose

connectivity we are interested, so each color can be verified in O(α(N)
√
M) time.

Once we are done, discard F and move on to the next block, beginning with the next

color after d.

The running time is made up of:

1. Block-level effort. There are O(
√
M) blocks and it takes O(Mα(N)) to rebuild the

forest in each block.

2. Color-level effort. There are N colors and for each color we check connectivity in

O(α(N)
√
M).

Thus, the overall running time is O(α(N)M
√
M).

This approach is not theoretically sound, because there may exist a color (even multiple

colors) with O(M) incident edges. However, it behaves well in practice.

7


