
Squirrel – solution

Author: Cristian Frâncu

The problem consists of a relatively easy recursion plus a massive number of coprimality

tests. We discuss several ways of testing coprimality.

Euclid’s GCD algorithm

By definition, two numbers are coprime if their greatest common divisor (GCD) is 1.

Therefore, we can answer tests using Euclid’s algorithm. This can require up to 25

modulo operations per test, given that the 25th Fibonacci number is 46368 (see this

Wikipedia article for an in-depth analysis). The average number of operations will be

lower, but still significant.

This very basic approach is expected to win 15 points.

Binary GCD algorithm

Euclid’s algorithm uses very inefficient modulo operations. Instead, the binary GCD algo-

rithm performs no divisions, only simple bit operations (shifting and OR-ing). Wikipedia

has a comprehensive explanation and code sample. The code can further be optimized

by using built-in functions (or precomputed tables) for shifting off all the trailing zeroes

in one operation instead of using a loop.

This runs roughly twice as fast as Euclid’s algorithm and is expected to win 25 points.

Factor merging

So far we answered coprimality tests by computing the actual GCD. For further improve-

ments, we recognize that any common divisor suffices.

One idea is to compute the sorted list of prime factors, L(x), for every x ∈ [1, 50 000].

1

https://en.wikipedia.org/wiki/Euclidean_algorithm#Worst-case
https://en.wikipedia.org/wiki/Binary_GCD_algorithm


For example, L(63) = {3, 7} and L(180) = {2, 3, 5}. Two numbers are coprime if their

factor lists have no common elements. Since L(63) ∩ L(180) = {3} 6= ∅, it follows that

63 and 180 are not coprime. The actual GCD is 9, but that is irrelevant.

L(x) can have up to 6 elements, since 2 · 3 · 5 · 7 · 11 · 13 < 50 000. However, the average

length is 2.6 elements (determined experimentally). Therefore, if we look for a common

element by merging two sorted lists, we expect to make just 5.2 comparisons on the

average, and likely even fewer because we terminate the merge process as soon as we

encounter a common element. There will be additional checks for corner cases (0 and 1).

This approach runs roughly twice as fast as the binary GCD algorithm and is expected

to win 50 points.

Bit masks

We begin by observing that any number x ≤ 50 000 can have at most one prime factor

greater than
⌊√

50 000
⌋

= 223. Therefore, we can rewrite L(x) = l(x) ∪ {px}, where l(x)

is the set of prime factors of x up to and including 223 and px is an optional prime factor

larger than 223. If x does not have a prime factor larger than 223, then px is undefined.

With this notation, two numbers x and y are coprime if

1. l(x) ∩ l(y) = ∅ and

2. either px or py are undefined or they are different.

To quickly compute intersections of factor lists, note that 223 is the 48th prime. We

can represent factor lists efficiently using one bit per prime number. Bit 0 (the least

significant bit) denotes the presence of 2, bit 1 denotes the presence of 3 and so on. For

example, L(63) = {3, 7} is represented as the bit mask 000 · · · 01010, where bits 1 and 3

are set to denote the presence of the prime factors 3 and 7 respectively.

The big payoff of this representation is that we can test coprimality using very few

operations:

1. The bitwise AND of l(x) and l(y). If it is nonzero, then x and y have a common

divisor of at most 223.

2. The comparison of px of py, once we establish that both are defined.

3. A few additional corner cases for 0 and 1, depending on the implementation.

This representation needs just 10 bytes per coordinate (one long long for l(x) plus one

unsigned short for px), for a total of 500 KB. Grouping these in a struct will cause the

2



short (16-bit) field to be aligned to 64 bits, which increases the actual memory usage

to 800 KB. The small memory footprint is important because less memory is easier to

cache, which can improve the performance considerably.

We can further reduce the memory needed to 400 KB by actually storing just 48 bits per

bit mask. Since there is no native 48-bit data type, we can simulate it by splitting our

masks into 32 bits (one unsigned) plus 16 bits (one unsigned short).

This approach runs more than twice as fast as the factor merging algorithm and is ex-

pected to win 100 points.

3


