Editorial: Towns

The graph given in this task is an edge-weighted tree T), in which the degree of
each internal node is at least three. Let n denote the number of leaves of T). The
goal is to find the centers of the tree and determine if any center is also a leaf
median (an internal node such that after removing the node, every component
contains at most n/2 leaves. In this task, the tree is not given, and the contestants
must solve the task by using limited number of queries for distances between
leaves. An algorithm using 7n/2 queries is sketched as follows. The details are in
the next sections. * First, find the centers by at most 2n-3 queries; and then * for
each center (at most two centers), determine if it is also a leaf median by using no
more than 3n/2 queries.

Radius and centers

The diameter of a tree can be found with 2n - 3 queries as follows. * Farthest to-
Farthest: Pick an arbitrary vertex v and find a vertex s farthest to r. Find a vertex
t farthest to s. It can be shown that d(s,t) is a diameter of the tree. * Any center
must be one the vs-path. * Then the vertices on the vs-path with its distance to s
closest to d(s,t)/2 are centers.

Determining if a center is also a median

Let v,s be the two leaves in the above process and m be a center on the vs-path
with d(s,m) = r. We need to determine if each component of T — m has at most n/2.
Let S be the set of all leaves.

First we compute the multiset B = {(d(u,s) + d(s,v) - d(u,v))/2 | Yu € S}. Each of the
different values in B identifies a unique internal vertex on the svpath. Let m°be
the internal vertex on the sv-path with d(s,m°) = a, where a is the median of the
multiset B. If we root T at the sv-path, the leaf median must be in the subtree
rooted at mP. Therefore if r 6= a (i.e,, m 6= m%), then m is not a median. Note that
there are two medians in B if |B| is even. Otherwise it remains to solve the “giant
component” problem: checking if there is a component in T-m with more than n/2
leaves.

Let X ={u € S| d(us) + d(s,v) - d(u,v) = 2r} which is the set of the leaves
branching from sv-path at m. For x1,x; € X, we have that x1,x; are in the same
component of T-m iff d(s,x1) + d(s,x2) — d(x1,x2) > 2r. Then, we can solve the giant
component problem by algorithms for the following problem: There are n color
balls and we want to determine if there are more than n/2 balls of the same color.

The cost is counted by the number of performed queries R(u,v) which returns
Equal/NotEqual according to if u and v are of the same color.

It was shown that d3n/2e - 2 queries are necessary and sufficient in Fischer
and Salzberg (1982), Solution to problem 81-5, J. Algorithms, pp. 376-379. The
following is another similar approach. Initially each element is itself a set. At each
iteration, we arbitrarily pair up the survival sets and compare their
representatives. If they are equal, then join the two sets into their union.
Otherwise, mark both dead. In the case that the number of alive sets is odd, mark
anyone dead. Repeating this process, eventually either there is exactly one
survival set or all sets are dead. It can be shown that if there is a majority
originally, then it must be the survival one. So the remaining work is to compare
the survival representative with the representatives of all DEAD sets.

The number of comparisons: Let A;denote the number of alive sets in the i-th
iteration (Ao = n). The number of comparisons to obtain the only survival set is
1/2(Ao+ A1+ Az...). In the second stage the number of comparisons is the number
of dead sets. Let D;denote the number of sets die at iteration i. Then, we have D1 =
Ao -2A;. Similarly D;= Ai-1 -2A;. Therefore, the total number of dead sets is (4o
-2A1)+(A1 -242)+... = Ao —(A1 +A2 +...). In summary, the number of comparisons is
(3/2)40- (1/2)(A1+ A2 +..) <3n/2.

