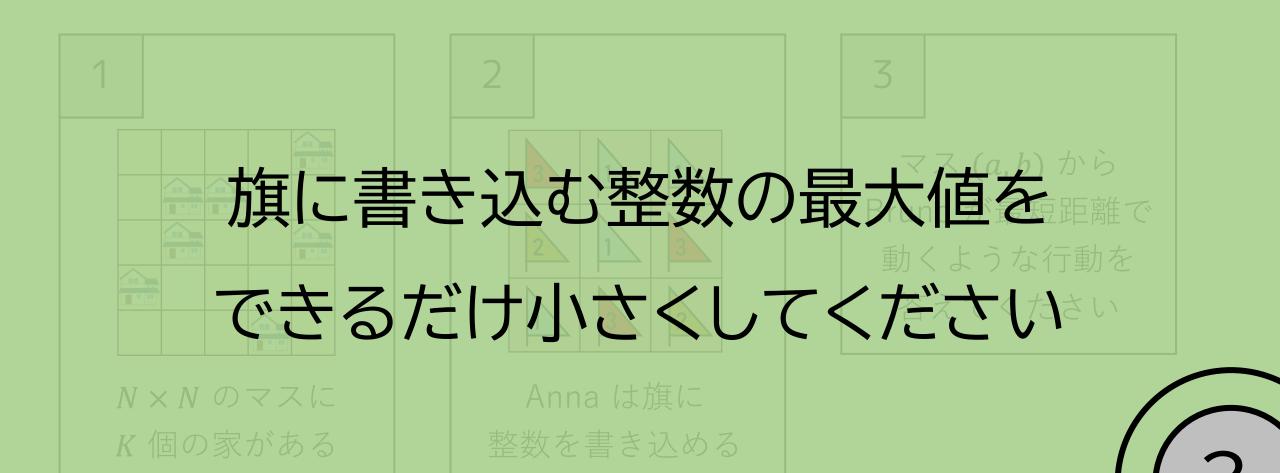


1

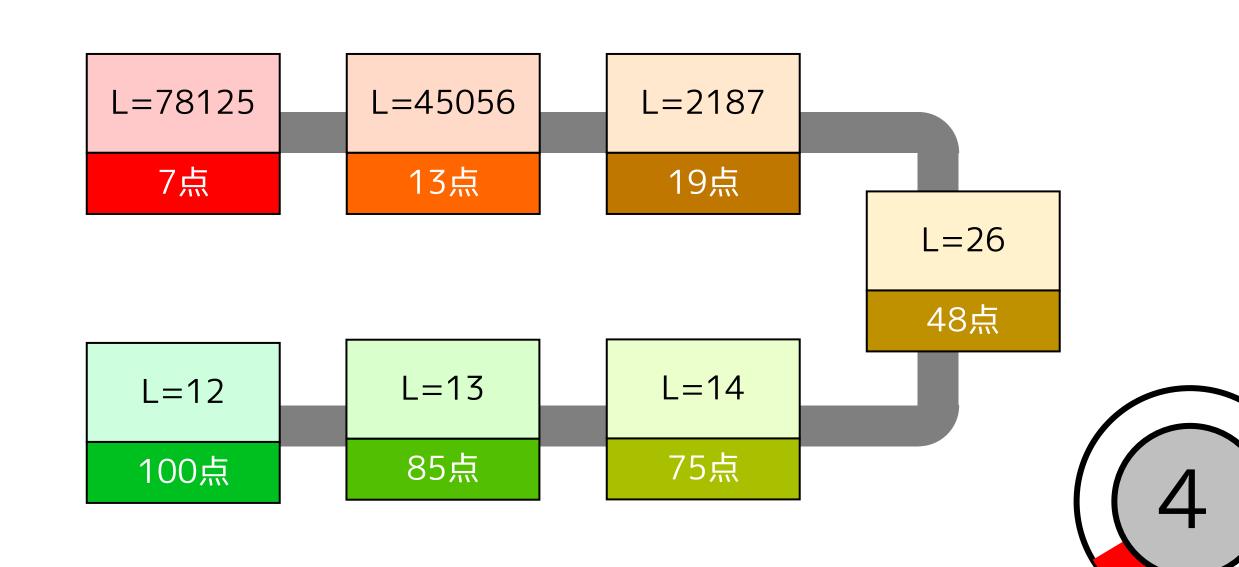
問題概要

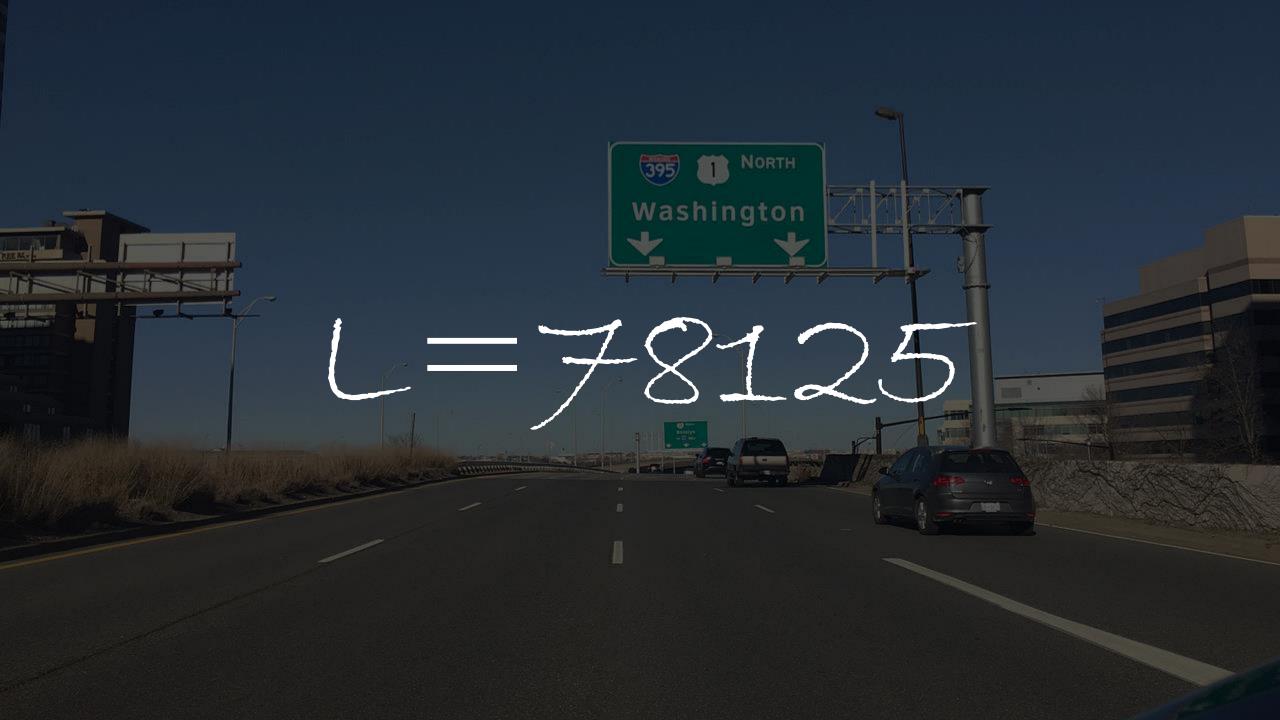
 $N \times N$ のマスに K 個の家がある



3

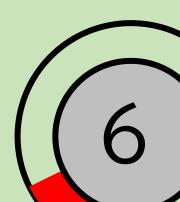
マス (*a*,*b*) から Bruno が最短距離で 動くような行動を 答えてください

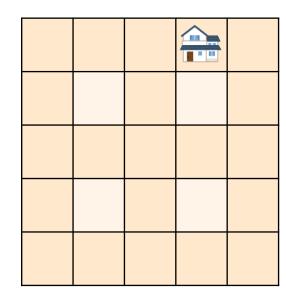



1 問題概要

1

問題概要




典型

K=1 など特殊な

ケースを考える

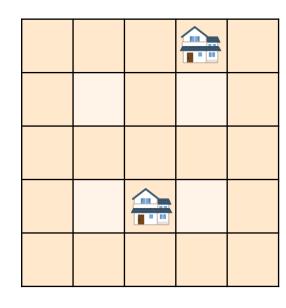
K=1 のときに解けないか?

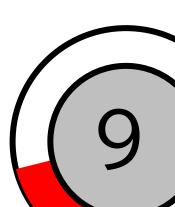
K=1 のときに解けないか?

0	0	0		2
0	0	0	1	2
0	0	0	1	2
0	0	0	1	2
0	0	0	1	2

各マスに対して、

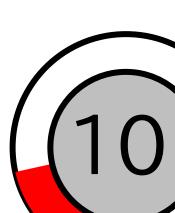
「そのマスから出発した時どの行動を取れば


良いか」


を旗に書きこめばよい (L=5)

- ※正確には 1-indexed なので 0 を記録してはいけません
- ※本解説では分かりやすさ重視のため O-indexed にしています

K が一般のときに解けないか?


K が一般のときに解けないか? 各候補の場合の行動を考えてみよう

0	0	0		2
0	0	0	1	2
0	0	0	1	2
0	0	0	1	2
0	0	0	1	2

0	0	3	2	2
0	0	3	2	2
0	0	3	2	2
0	0		2	2
0	0	1	2	2

候補 0 の場合の行動

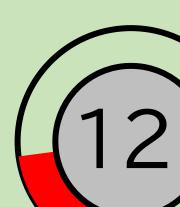
候補1の場合の行動

Kが一般のときに解けないか? 各候補の場合の行動を考えてみよう

こできないか?	灯	安	整	の	7	1	7		戏	\(\frac{1}{2} \)
								1		
								1		

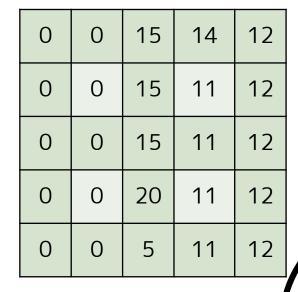
候補 0 の場合の行動

侯補 1 の場合の行動



Kが一般のときに解けないか? 各候補の場合の行動を考えてみよう

候補 0 の場合の行動

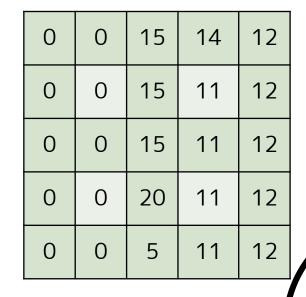

候補 1 の場合の行動

K が一般のときに解けないか?
二つの表を 5 進数で合成させてみよう!

0	0	0		2
0	0	0	1	2
0	0	0	1	2
0	0	0	1	2
0	0	0	1	2

0	0	3	2	2
0	0	3	2	2
0	0	3	2	2
0	0		2	2
0	0	1	2	2

候補 0 の場合の行動


候補1の場合の行動

K が一般のときに解けないか?

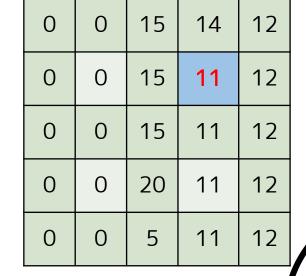
Anna: 二つの表を 5 進数で合成させてみよう!

0	0	0		2
0	0	0	1	2
0	0	0	1	2
0	0	0	1	2
0	0	0	1	2

0	0	3	2	2
0	0	3	2	2
0	0	3	2	2
0	0		2	2
0	0	1	2	2

候補0の場合の行動

候補1の場合の行動


K が一般のときに解けないか?

Anna: 二つの表を 5 進数で合成させてみよう!

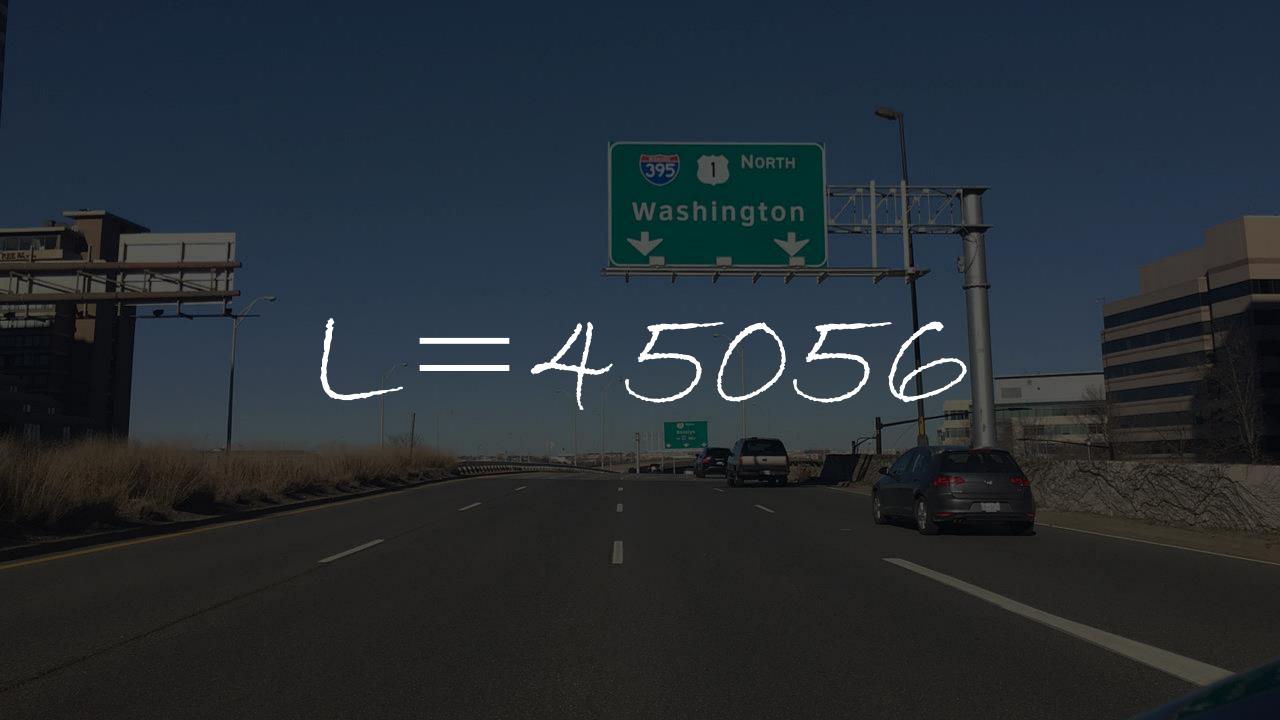
2×5+1=11 →11 を記録

0	0	0		2
0	0	0	_	2
0	0	0	1	2
0	0	0	1	2
0	0	0	1	2

0	0	3	2	2
0	0	3	2	2
0	0	3	2	2
0	0		2	2
0	0	1	2	2

候補 0 の場合の行動

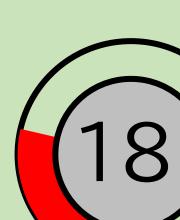

候補1の場合の行動


L の値はいくつになる?

7桁の5進整数になるので、最大値は

$$5^7 = 78125$$

ここまでで 7 点が獲得できます



典型

あり得る状態数を

見積もる

以下のような場合は存在するのか?

候補 0: マス (a, b) で行動 4

候補 1: マス (a,b) で行動 4

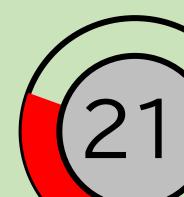
候補 2: マス (a, b) で行動 4

•

候補 6: マス (a, b) で行動 4

以下のような場合は存在するのか?

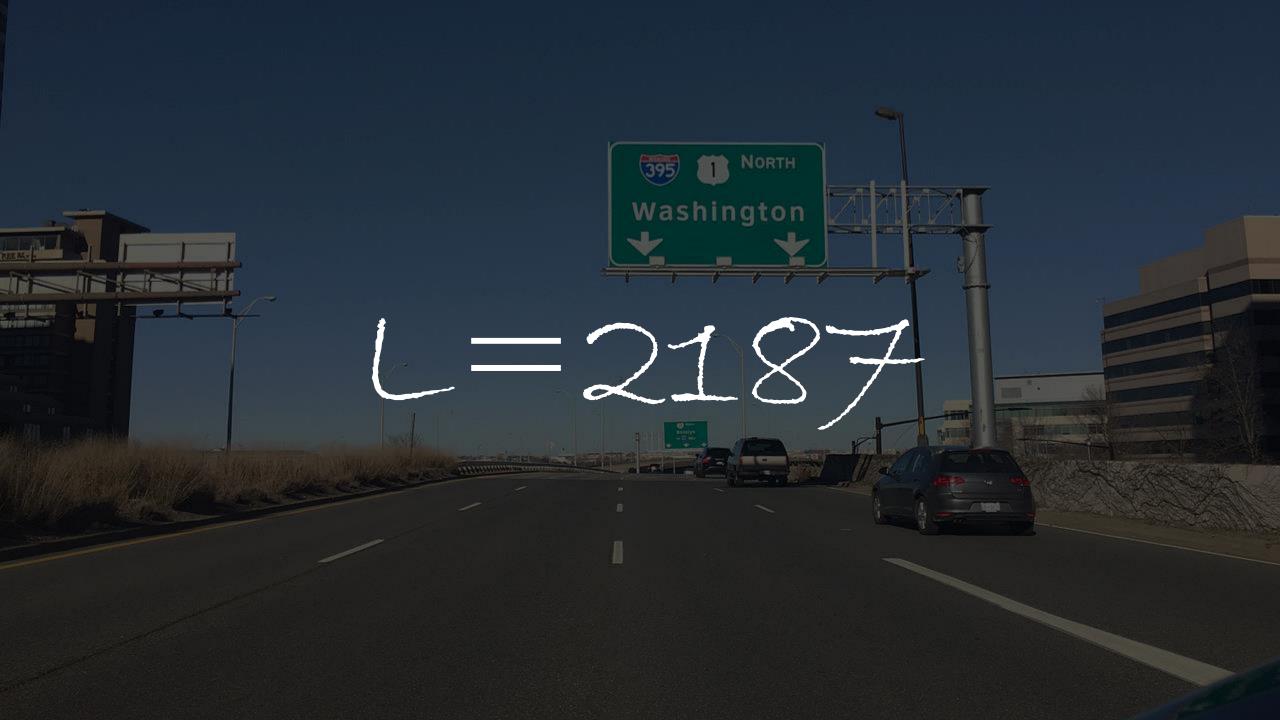
候補
$$O: \nabla X (a,b)$$
 で行動 $4 \rightarrow (X_0,Y_0) = (a,b)$ 候補 $1: \nabla X (a,b)$ で行動 $4 \rightarrow (X_1,Y_1) = (a,b)$ 候補 $2: \nabla X (a,b)$ で行動 $4 \rightarrow (X_2,Y_2) = (a,b)$:


候補 6: マス (a,b) で行動 4 $\rightarrow (X_6,Y_6) = (a,b)$

以下のような場合は存在するのか?

```
候補 0: \forall X(a,b) で行動 4 \rightarrow (X_0,Y_0) = (a,b) 候補 1: \forall (X_i,Y_i) \not= (X_j,Y_j) (x_i,Y_j) (x_i,Y
```

候補 6: マス (a,b) で行動 $4 \rightarrow (X_6,Y_6) = (a,b)$


基本的に、行動 4 が 2 つ以上現れることはない

そこで、0 ≤ a_i ≤ 4 で a_i = 4 となる i が 2 個以上ないような数列 ($a_0, a_1, ..., a_6$) の通り数は 45056 通り

→ 各数列に対して ID を予め振っておくと、

L = 45056 で解ける (13 点獲得)

典型 K=1 など特殊な

ケースを考える

K=1 の場合に L=3 で解けないか?

典型

距離 mod 3 を記録

※ JOI 2020「Stray Cat」15点解法

候補となる家からの最短距離 mod 3 を書き込むことを考える

2	1	0	1	2
1	0	2	0	1
0	2	1	2	0
2	1		1	2
0	2	1	2	0

Anna が書く整数

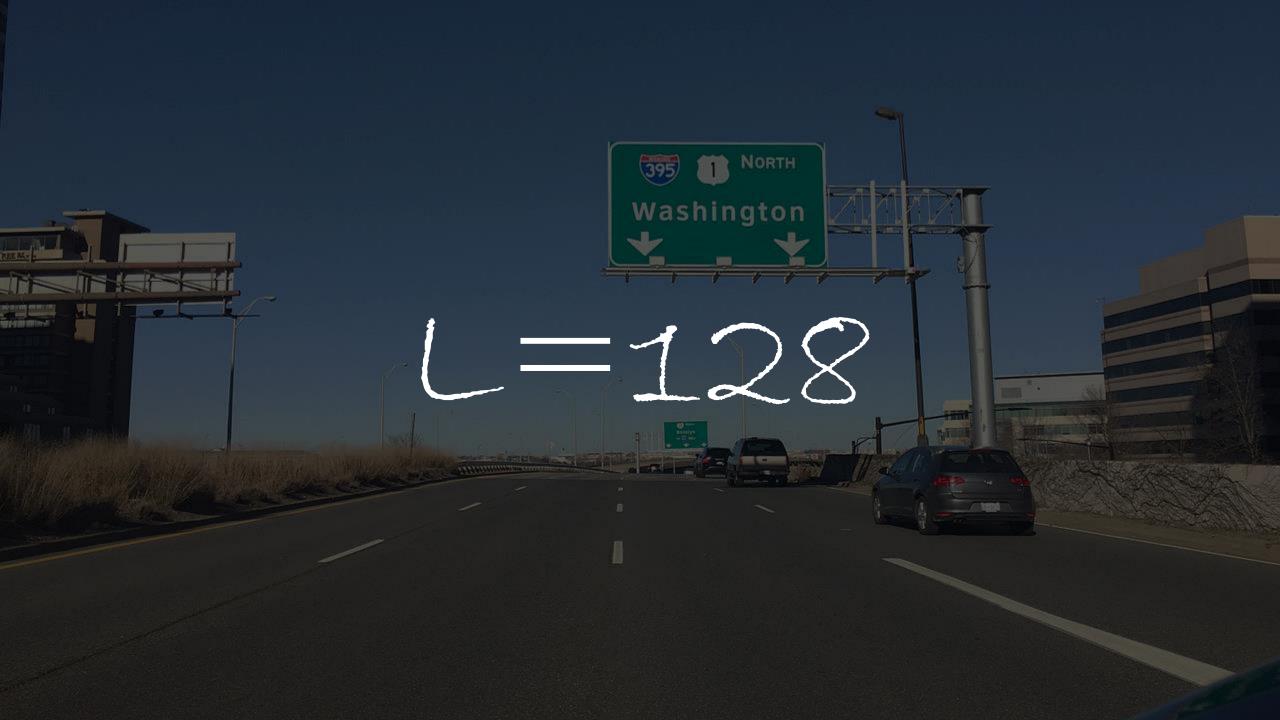
候補となる家からの最短距離 mod 3 を書き込むことを考える

2	1	0	1	2
1	0	2	0	1
0	2	1	2	0
2	1		1	2
0	2	1	2	0

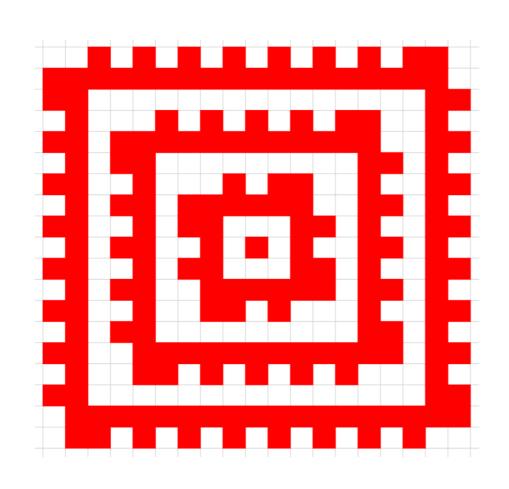
Anna	が書	<	整数

2	~	0	1	2
1	0	2	0	1
0	2	1	2	0
2	1	0	1	2
0	2	1	2	0

Bruno に見える整数


隣り合う整数は (1,0,0,0) の 4 つである。最短距離 *mod* 3 が 2 → 1 になっている場合距離 が小さくなるので、1 のある方 向に移動する。

最後は 7 点解法と同様に 3 進数にして考えた上で、旗に整数を書き込むことを考える。そのときの *L* の値は、


$$3^7 = 2187$$

ここまでで 19 点が獲得できます

4 L = 128 (39 点)

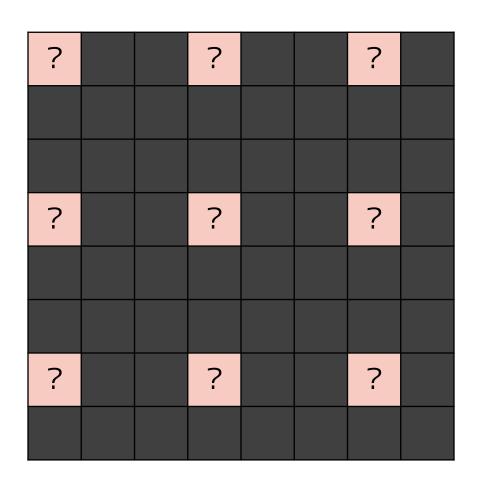
左図のように旗に番号を記録すると、K=1 の場合に L=2 で解くことができます

あとは2進数表記にします

$$L = 2^7 = 128$$

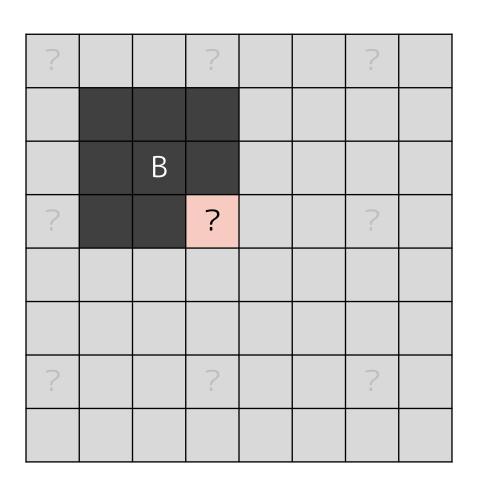
これまでの解法では、各マスについて記録していたが、1個のマスに K 個の情報を記録するのは明らかに無駄そう

→ マスごとに「どの情報を記録するか」の 役割を分けられないか?


これまでの解法では、各マスについて記録していたが、1個のマ

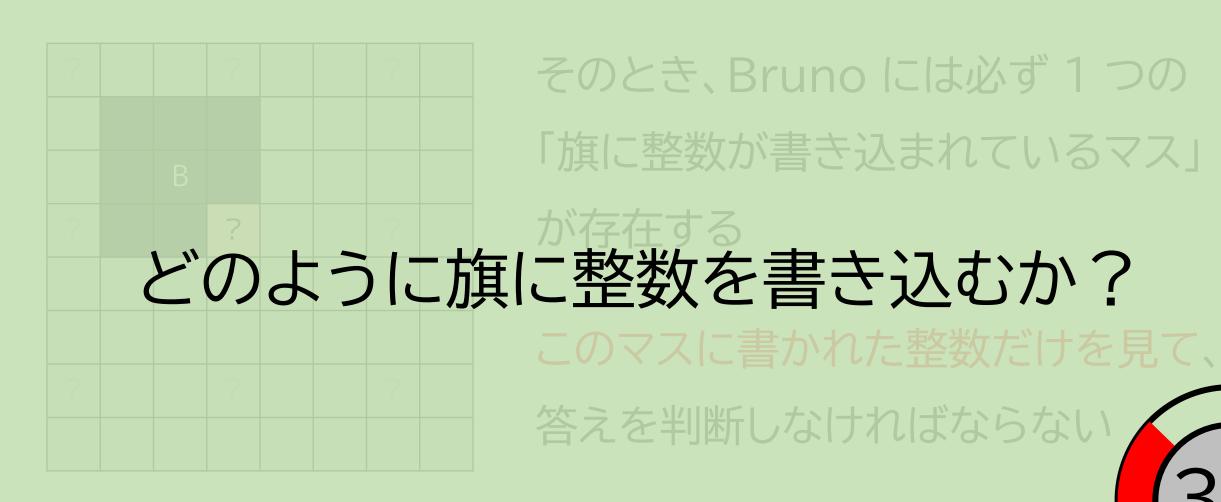
スに K 個の情報を記録するのは明らかに無駄そう

典型 K=1 など特殊な


役割を分けられなりかってを考える

K = 1 で、マスを (i,j) とすると i,j が 両方 3 の倍数のマスにしか旗に番号 を記録できないような場合を考える

※他のマスの旗に書かれた整数は 0 として考える



そのとき、Bruno には必ず 1 つの 「旗に整数が書き込まれているマス」 が存在する

このマスに書かれた整数だけを見て、

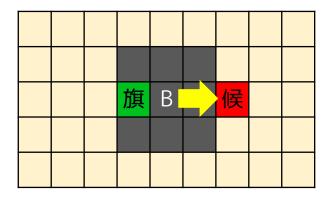
答えを判断しなければならない

$5 \quad L = 14 (75 点)$

5 L = 14 (75 点)

お気持ち

候補者の大体の位置が 分かれば良さそう 観察


5 L = 14(75点)

お気持ち

この辺り?

候補者の大体の位置が 分かれば良さそう

観察

x 座標が 2 以上大きければ右方向に行けばよい

5 L = 14 (75 点)

x座標が2以上大きい部分は すべて同じ整数を記録していいのでは?

5 L = 14 (75 点)

K=1 で別々の値を記録すると、以下のようになる

16	15	47	46	44	39	38
17	14	48	11	45	40	37
18	49	1	2	3	41	36
19	13	4	候	6	10	35
20	12	7	8	9	43	34
21	23	25	12	31	32	33
22	24	26	27	28	29	30

x 座標が 2 以上大きい場合、同じ番号にする

16	15	47	46	44	10	10
17	14	48	11	45	10	10
18	49	1	2	3	10	10
19	13	4	候	6	10	10
20	12	7	8	9	10	10
21	23	25	12	31	10	10
22	24	26	27	28	10	10

x 座標が 2 以上小さい場合、同じ番号にする

13	13	47	46	44	10	10
13	13	48	11	45	10	10
13	13	1	2	3	10	10
13	13	4	候	6	10	10
13	13	7	8	9	10	10
13	13	25	12	31	10	10
13	13	26	27	28	10	10

y 座標が 2 以上大きい場合、同じ番号にする

13	13	11	11	11	10	10
13	13	11	11	11	10	10
13	13	1	2	3	10	10
13	13	4	候	6	10	10
13	13	7	8	9	10	10
13	13	25	12	31	10	10
13	13	26	27	28	10	10

y 座標が 2 以上小さい場合、同じ番号にする

13	13	11	11	11	10	10
13	13	11	11	11	10	10
13	13	1	2	3	10	10
13	13	4	候	6	10	10
13	13	7	8	9	10	10
13	13	12	12	12	10	10
13	13	12	12	12	10	10

結局 Anna はそんな感じに整数を書けばよい(候補者が真ん中の場合)

13	13	11	11	11	10	10
13	13	11	11	11	10	10
13	13	1	2	3	10	10
13	13	4	候	6	10	10
13	13	7	8	9	10	10
13	13	12	12	12	10	10
13	13	12	12	12	10	10

y 座標が 2 以上小さい場合、同じ番号にする

13	13	11	11	11	10	10
13	13	11	11	11	10	10
13	13	1	2	3	10	10
13	13	4	候	6	10	10
13	13	7	8	9	10	10
13	13	12	12	12	10	10
13	13	12	12	12	10	10

L = 14 (75 点)

13	13	11	11	11	10	10
13	13	11	11	11	10	10
13	13	1	2	3	10	10
13	13	4	候	6	10	10
13	13	7	8	9	10	10
13	13	12	12	12	10	10
13	13	12	12	12	10	10

最後に、Bruno の実装は以下の通り

- 10 必ず右に行く
- 11 必ず左に行く
- 12 必ず下に行く
- 13 必ず上に行く
- 他 旗との相対的な位置関係 から計算して判断

13	13	11	11	11	10	10
13	13	11	11	11	10	10
13	13	1	2	3	10	10
13	13	4	候	6	10	10
13	13	7	8	9	10	10
13	13	12	12	12	10	10
13	13	12	12	12	10	10

例えば Bruno が (1,5) にいた場合

13	13	11	11	11	10	10
13	13	11	11	11	10	10
13	13	1	2	3	10	10
13	13	4	候	6	10	10
13	13	7	8	9	10	10
13	13	12	12	12	10	10
13	13	12	12	12	10	10

例えば Bruno が (1,5) にいた場合

整数 11 が書かれた旗が見える

13	13	11	11	11	10	10
13	13	11	11	11	10	10
13	13	1	2	3	10	10
13	13	4	候	6	10	10
13	13	7	8	9	10	10
13	13	12	12	12	10	10
13	13	12	12	12	10	10

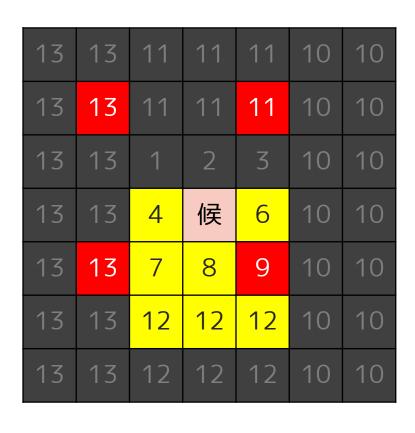
例えば Bruno が (1,5) にいた場合

整数 11 が書かれた旗が見える

下に行けばよいことが分かる

13	13	11	11	11	10	10
13	13	11	11	11	10	10
13	13	1	2	3	10	10
13	13	4	候	6	10	10
13	13	7	8	9	10	10
13	13	12	12	12	10	10
13	13	12	12	12	10	10

例えば Bruno が (4,3) にいた場合


13	13	11	11	11	10	10
13	13	11	11	11	10	10
13	13	1	2	3	10	10
13	13	4	候	6	10	10
13	13	7	8	9	10	10
13	13	12	12	12	10	10
13	13	12	12	12	10	10

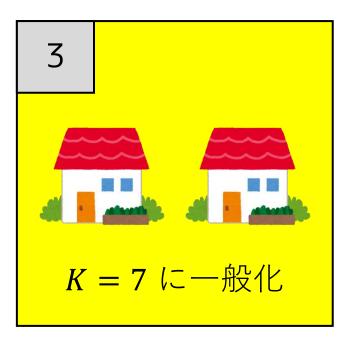
例えば Bruno が (4,3) にいた場合

整数 9 が書かれた旗が見える

例えば Bruno が (4,3) にいた場合

整数 9 が書かれた旗が見える

旗は Bruno から見て (+1,±0) の位置にある


ので、候補者は Bruno から見て (0,-1) したがって、上方向に進めばよい

L = 14 (75 点)

5 L = 14 (75 点) K=7 のとき

K=7 の場合

以下の表のように候補者の情報を記録することを考える

候補	候補 1	候補 2	候補	候補 1	候補 2	候補	候補 1
候補 3	候補 4	候補 5	候補 3	候補 4	候補 5	候補 3	候補 4
候補 6			候補 6			候補 6	
候補	候補 1	候補 2	候補	候補 1	候補 2	候補	候補 1

5 L = 14 (75 点) K=7 のとき

どの 3×3 のマス目にも、候補 0~6 の情報がすべて含まれているため、Bruno は正しく答えられる

候補	候補 1	候補 2	候補	候補 1	候補 2	候補	候補 1
候補 3	候補 4	候補 5	候補 3	候補 4	候補 5	候補	候補 4
候補			候補 6			候補 6	
候補	候補 1	候補 2	候補	候補 1	候補 2	候補	候補 1

5 L = 14 (75 点) K=7 のとき

候補 0 ~ 6 のマス目には 1 以上 13 以下の整数を記録することができるため、空きマスの片方に 14 を記録すればよい (空きマスの位置によって、どのマスがどの候補の情報であるかが分かる)

ここまでで 75 点が獲得できます

候補	候補 1	候補 2
候補 3	候補 4	候補 5
候補 6		14

お気持ち

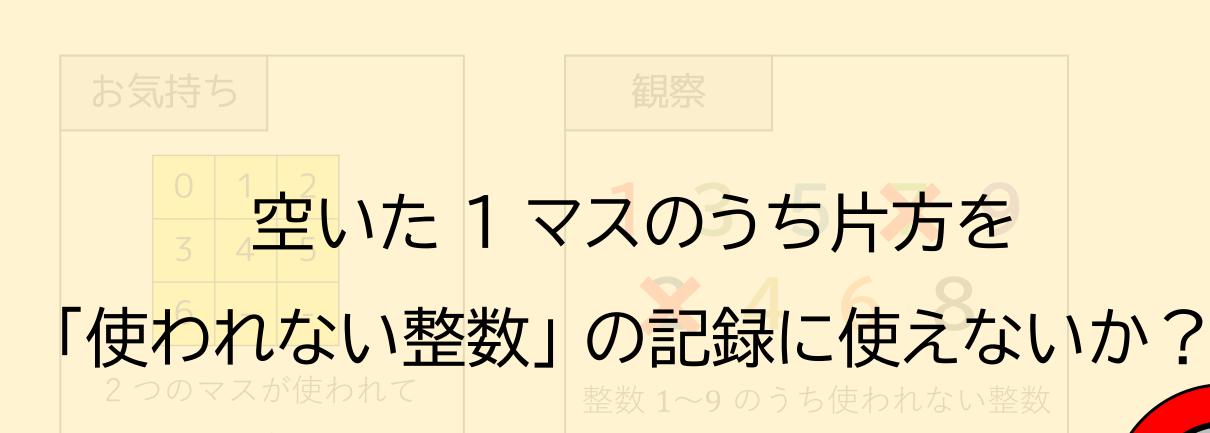
候補	候補 1	候補 2
候補 3	候補 4	候補 5
候補 6	-	(13)

1 つのマスが使われて いなくて無駄そう 観察

お気持ち

候補	候補 1	候補 2
候補 3	候補 4	候補 5
候補 6	-	(13)

1 つのマスが使われていなくて無駄そう


観察

1 3 5 **X** 9

X 4 6 8

整数 1~9 のうち**全体で**使われな い整数が 2 個以上存在する

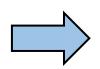
※各候補について、9 以下の整数は高々 1 回しか書き込まれないため

空きマスに「使われない整数」を記録した場合…

- 使われない整数を val とする
- そのとき、val + 1 以上の整数は全部 1 減少させる

空きマスに「使われない整数」を記録した場合…

- 使われない整数を val とする
- そのとき、val + 1 以上の整数は全部 1 減少させる


1	O	11
8	5	12
4	I	13

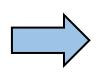
空きマスに「使われない整数」を記録した場合…

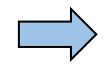
- 使われない整数を val とする
- そのとき、val + 1 以上の整数は全部 1 減少させる

1	9	11
8	5	12
4	-	13

1	9	11
8	5	12
4	7	13

val = 7 の場合


空きマスに7を記録


空きマスに「使われない整数」を記録した場合…

- 使われない整数を val とする
- そのとき、val + 1 以上の整数は全部 1 減少させる

1	9	12
8	5	13
4	1	14

1	9	12
8	5	13
4	7	14

1	χ	11
7	5	12
4	7	13

val = 7 の場合

空きマスに7を記録

減少させる

空きマスの位置は、「13」と書き込まれたマスの位置を 参考にすると分かる

val ≤ 8 より最大値 14 は必ず 1 減少して 13 になる ここまでで 85 点が獲得できます

お気持ち

1 3 5 7 **9 2** 4 6 8

使われていない整数の

2個目を利用できないか?

お気持ち

1 3 5 7 9

X 4 6 8

使われていない整数の

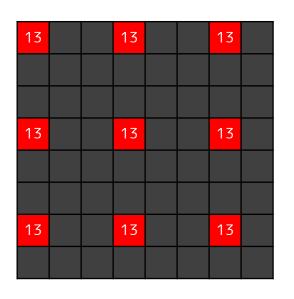
2個目を利用できないか?

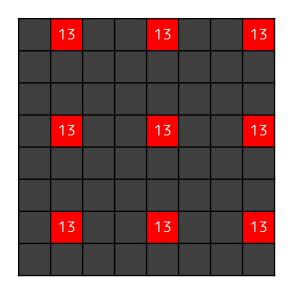
観察

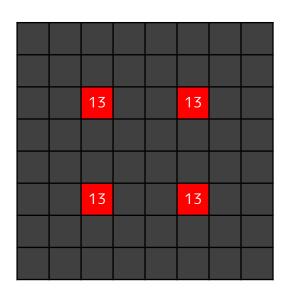
1	6	11	1	6	10
8	5	12	8	5	11
4	ı	13	4	-	12

9 が使われないことが保証される特殊な場合だと 1 個減らせる

お気持ち


1359を無理矢理使わせない。 方法は存在するか?


使われていない整数の

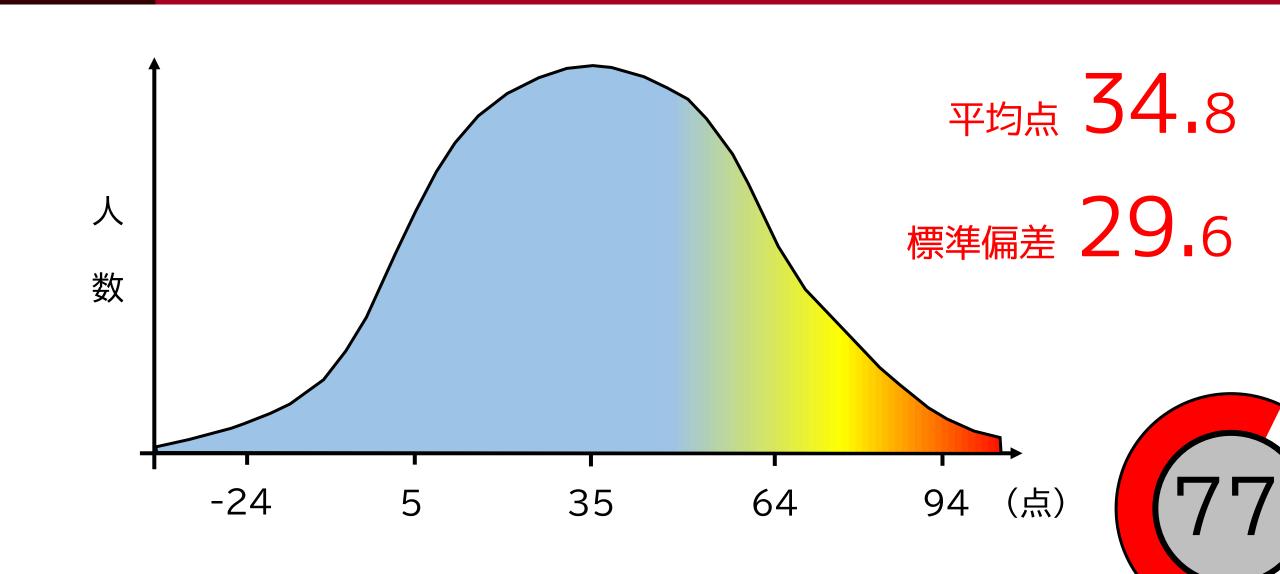

2個目を利用できないか?

9 が使われないことが保証される 特殊な場合だと 1 個減らせる

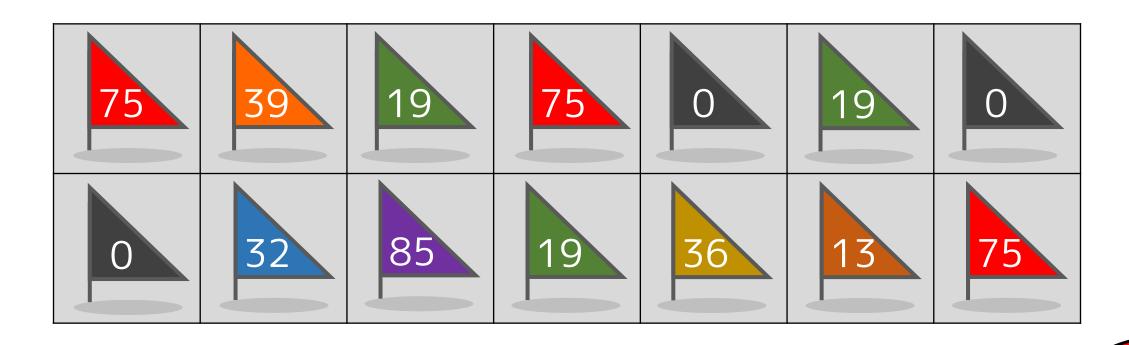
最大値 (85 点解法では 13) を記録する位置を全探索すると 9 通り中 2 通り以上では 9 が使われない

したがって、以下のステップで最大値 12 が達成できる

9 通り全探索して、「9」が使われない書き方を見つける


そうすると、最大値 13(=14-1)の構成ができる

あとは 85 点解法の通りにさらに 1 減らす



得点分布 (正規分布)

8 得点分布

ご清聴ありがとうございました