
EJOI Day 1

Task Magic (English)

Task Magic Page 1 of 2

Analysis

This task looks like a direct dynamic optimization problem but this is not correct.

There have to be made some important observations and after them the task becomes more

straightforward.

The first subtask is for 10 points. No observations are needed to be made here –

considering the constraints it is enough for every substring to be viewed and to be counted

how many times every type of letter is met. Next the counts for every type of letter are

checked and if they are all equal then the current substring is counted in the answer. The

expected complexity is 𝑂(𝑛3 + 𝑘𝑛2).

The second subtask is for 20 points. Here the idea is to optimize what we did before.

We will remove the inner cycle – we will calculate the count for every type of letter for a

current substring in constant complexity. There are different ways to do that. The author

precomputes the prefix counts for every type of letter and with this the count for every type

of letter for a current substring can be calculated as a subtraction of prefix counts. So the

complexity here is 𝑂(𝑘𝑛2).

The third subtask is for 30 points. We have to make the first observation in the task

which is for an easier variant – when we only have two types of letters. Let we do the

following change of the letters in the string. We replace the first type of letters with the

number +1 and the second type – with the number −1 (negative 1). In this way our string

becomes an array of numbers. The needed substrings are with equal number of letters from

the first and the second type i.e. the sum of the numbers in the array in these positions

would be 0 which means we are looking for subintervals with 0 sum in the array. This task is

solved easier than the original. Let we calculate the prefix sums in the array 𝑝𝑟𝑒𝑓 (we have a

fictive prefix sum in the beginning which is 0). The sum of a subinterval of the array from 𝑥

to 𝑦 is 𝑝𝑟𝑒𝑓[𝑦] − 𝑝𝑟𝑒𝑓[𝑥 − 1]. We want this to be 0 i.e. for a given 𝑦 the subintervals

ending there with zero sum are with 𝑥-es for which 𝑝𝑟𝑒𝑓[𝑥 − 1] = 𝑝𝑟𝑒𝑓[𝑦]. To solve the

current subtask we can save how many prefix sums are there for every possible value of a

sum in the array 𝑐𝑛𝑡 and for a current index 𝑖𝑛𝑑 the number of subintervals with the needed

property ending there are 𝑐𝑛𝑡[𝑖𝑛𝑑]. We add this to the value of the answer and then we

need to make the update: 𝑐𝑛𝑡[𝑖𝑛𝑑] + +. The complexity of the described procedure is linear

– 𝑂(𝑛) but the solution for the whole task isn’t so here it can be made a solution with

complexity 𝑂(𝑛 log2 𝑛).

The fourth subtask is for 40 points. The previous subtask was useful because the idea

can be adapted for the whole task. Let we fix two types of letters – 𝑎 and 𝑏 (these are only

fictive and the letters can be different). Let we save the number values in the array 𝑛𝑢𝑚𝑠1.

Again in the same way we replace the letters of type 𝑎 with +1, we replace the letters of

EJOI Day 1

Task Magic (English)

Task Magic Page 2 of 2

type 𝑏 with −1 but for every letter which is from a different type we replace it with the

number 0. Let we take the second type of letters – 𝑏 and a new type of letters – 𝑐 and we

will save the numbers in a new array 𝑛𝑢𝑚𝑠2. After we make the replacements and save the

numbers using the described scheme we take 𝑐 and another different type of letters (for

example 𝑑) and we again fill in an array 𝑛𝑢𝑚𝑠3 and we do this while we still have more

unused types of letters. A substring that fulfills the requirement in the statement is such that

the sums of the numbers in the corresponding subintervals in the arrays

𝑛𝑢𝑚𝑠1, 𝑛𝑢𝑚𝑠2, … , 𝑛𝑢𝑚𝑠𝑘−1 are all zeroes. Now we can approach analogously as in the

previous subtask. Here we have a problem – the array 𝑐𝑛𝑡 which we used now has to have

several numbers as a parameter. We can use hashes which isn’t expected to be known by

the competitors so the author’s solution doesn’t use this despite providing complexity of

𝑂(𝑘𝑛). We can use the data structure 𝑚𝑎𝑝 from 𝑆𝑇𝐿 but we have to predefine operator and

there will be a big constant which will make the solution slower. The author approaches in

the following way. Let for every array 𝑛𝑢𝑚𝑠𝑖 we calculate the corresponding prefix array

𝑝𝑟𝑒𝑓𝑖. For every position 𝑖 we can make this type of sets 𝑆𝑖 {𝑝𝑟𝑒𝑓1, 𝑝𝑟𝑒𝑓2, … , 𝑝𝑟𝑒𝑓𝑛}. In

reality we search for pairs of sets 𝑆𝑥 and 𝑆𝑦 (of course 𝑥 < 𝑦) for which 𝑆𝑥 ≡ 𝑆𝑦. Let we sort

the sets 𝑆𝑖. Now the equivalent sets are adjacent. Let we view all groups of equivalent sets

and their number is 𝑝 and every group’s length is 𝑛𝑢𝑚𝑖. The number of all substrings which

fulfill the requirement from the statement is ∑ 𝑛𝑢𝑚𝑖
𝑝−1
𝑖=1 (𝑛𝑢𝑚𝑖 − 1). This is easy to be

calculated and solves the task for 100 points. The complexity of the described procedure is

𝑂(𝑘𝑛 log2 𝑛) – this is the complexity of the sorting of the sets 𝑆𝑖 which is the dominating in

the solution.

The thing which shouldn’t be forgotten is that we have to make the calculations by

the modulo in the statement. In reality it turns out that the answer can’t be too big (the

more types of letters the small it gets) – using a convenient sample the maximal number for

a given 𝑛 and 𝑘 is ⌊
𝑛

𝑘
⌋ (𝑛 + 1) −

𝑘⌊
𝑛

𝑘
⌋(⌊

𝑛

𝑘
⌋+1)

2
 which for the maximal constraints isn’t much

bigger than the modulo. The reason there is a modulo is for deception that the answer will

be very big and to prevent the competitors from doing cheat solutions. The task is

interesting because of the approach that the letters are replaced with numbers which is the

big step towards finding a solution with smaller complexity.

