
EJOI Day 2

Task Experience (English)

Task Experience Page 1 of 4

Analysis

1 Introduction
The problem statement in short is:

We have a tree in which every vertex has a weight. We want to decompose the tree into vertical

chains, such that every vertex belongs to exactly one chain and the sum of “values” of the chains is

maximum. The value of a chain is defined as Wmax −Wmin , where Wmax is the maximal weight of a

vertex in the chain and а Wmin is the minimal weight.

We want our solution to be O(N log N) or O(N) in time, where N is the number of vertices in the

tree.

2 Observations
To solve the problem we first need to make some observations. The most important one is that at

least one of the following is true for every chain:

• The chain should start from the vertex with the largest weight and finish on the vertex with
the smallest weight from this path.

• The chain should start from the vertex with the smallest weight and finish on the vertex with

the largest weight from this path.

This is true, because if we have a path not satisfying one of the above conditions we can divide

this path into several smaller ones without decreasing the initial value.

The second observation is that there exists an optimal decomposition into chains such that the

weights of the vertices in each chain are either increasing or decreasing. This observation is again

true because if there was a chain not satisfying this, we could have divided it into several smaller

ones without decreasing its initial values.

3 Main part
Using the above observations we can solve the problem in linear time. The author’s solution uses

only the first observation. Also there exists a solution which is easier to be implemented but it uses

both observations. Both solutions are linear in time.

To get partial points one could have implemented a brute force for 10 points. To get 40 points one

could implement a solution quadratic in time.

EJOI Day 2

Task Experience (English)

Task Experience Page 2 of 4

3.1 Solution for 40 points

We will solve the problem with dynamic programming.

Our state will be dpu which is the maximal sum of values of chains in a decomposition of the subtree

rooted at vertex u. We know that there is a chain starting at vertex u and finishing in a vertex

in its subtree. Lets denote this vertex as v and the set of vertices which belong to the path

from u to v as S. Also lets denote by Ci the sum of the dp values of the children of u (Ci

=∑x∈children(i) dpx). From here we get that for the chain starting at u and finishing at v, the value

of dpu will be ∑ x∈S Cx - ∑x∈S / {u} dpx + maxx∈S wx - minx∈S wx . And so we can find dpu by

checking this value for all vertices v in the subtree of u and then by getting the maximal value.

This solution is O(N2). If implemented well it can get even 50 points.

3.2 Author’s Solution

We will use dynamic programming to solve the problem. With each vertex we will associate 3 values:

• dpu,0 – maximum sum of values to cover the subtree of u.

• dpu,1 – maximum sum of values to cover the subtree of u, if we have an unfinished path, which
includes the root and a fixed maximum (the value of the maximum has been added in
advance).

• dpu,2 - maximum sum of values to cover the subtree of u, if we have an unfinished path, which
includes the root and a fixed minimum (the value of the minimum has been substracted in

advance).

• The answer to the problem will be dp1,0.

We will use DFS, starting from the root (vertex number 1). After going through all of the children of a

given vertex, we will calculate the three values for the vertex. Let us firstly calculate dpu,1. The

evaluation of dpu,2 will use an analogical approach as the one for dpu,1.

When we calculate dpu,1, we have two possibilities:

• A new path starts from vertex u.

• A path, which until now finished in one of the children of u, continues through u.

In the first case, the value will be Wu + ∑v∈children(u) dpv,0.

In the second case, we need to choose a child of u, the path from which we want to continue. Let

S = ∑v∈children(u) dpv,0. If the chosen child of u is p, the value of dpu,1 will be S − dpp,0 + dpp,1.

EJOI Day 2

Task Experience (English)

Task Experience Page 3 of 4

This way we can find the maximum value for dpu,1 and dpu,2. Now in order to calculate dpu,0, we

once again have two possibilities:

• To finish a path, where u is the vertex with maximum weight.

• To finish a path, where u is the vertex with minimum weight.

So we get dpu,0 = max(dpu,1 − Wu,dpu,2 + Wu).

This solution has a complexity of O(N) if it’s implemented by the described above way.

3.3 Second Solution (Encho Mishinev)

We will once again use dynamic programming. However, we will use the second observation – that

an optimal decomposition into paths exists, such that the values in each path are either only

increasing or only decreasing. If we decompose the tree in such fashion, we can say, that the weight

of a path is the sum of the absolute differences between each two consecutive vertices. For

increasing or decreasing paths this definition is equivalent to Wmax − Wmin With each vertex we will

associate 2 values:

• Fv,0 – maximum sum of values for the covering of the subtree of u, if the path starting from u is

with decreasing weights.

• Fv,1 - maximum sum of values for the covering of the subtree of u, if the path starting from u is

with increasing weights.

The answer to the problem will then be max(F1,0,F1,1)

The calculation of Fv,0 and Fv,1 is analogical, so we will focus only on the calculation of Fv,0:

Let S = ∑x∈children(v) max(Fx,0,Fx,1).

Because a decreasing path starts from v, we have top chose to which child it continues. If this

child is u (Wu ≤ Wv), the value will be S − max(Fu,0,Fu,1) + (Wv − Wu) + Fu,0.

We have to remember the case, where v is a path, consisting only of one vertex and thus the

value is simply S.

This way with O(1) we can evaluate the value for a fixed child, which allows us to calculate all

values in the tree with a complexity of O(N).

EJOI Day 2

Task Experience (English)

Task Experience Page 4 of 4

4 Additional information
You can try to solve a more difficult version of the problem. In it once again you need to maximize

the sum of the paths, where the value of a path is once again the difference between the largest and

smallest weight in the path, however we have one more condition – each path has to have

length ≤ K, where K is a given integer.

This version of the problem can be solved with a complexity of O(N log N), using a segment tree,

or with a complexity of O(N log2 N), using the technique, described here:

http://codeforces.com/blog/entry/44351.

http://codeforces.com/blog/entry/44351
http://codeforces.com/blog/entry/44351

