Alice, Bob and Circuit

Task Review

- Original task
- n persons, each with a name and a number.
- m letters, each specified by a sender and a recipient's names, with the content of the sender's number.
- For each person, calculate the sum of the received letter contents (modulo 2^{16})
- $n \leq 700, m \leq 1000$
- Communication style
- Alice knows the information of n persons, and Bob knows that of m letters. Each needs to send a binary string within 10^{5} bits to Circuit.
- Circuit has to use at most 2×10^{7} binary logic gates to get the results.

Subtask 1

- $n=1, m=0$
- No letters are sent. The result is simply 0 .
- 0 can be generated by a gate of operation=0.
- Or, 0 can be sent from Alice to Circuit.
- Expected score: 4 points.

Subtask 2

- $n=1,0 \leq m \leq 1$
- If $m=1$, the answer is the number. Else, the answer should be 0 .
- Alice sends the number (16 bits).
- Bob sends m (1 bit).
- Circuit performs 16 AND operations, and then output.
- Expected score: 8 points.

Subtask 3

- $n=1,0 \leq m \leq 1000$
- Answer is the number multiplies m.
- It is unnecessary to implement multiplication in circuit. Conducting addition for multiple times is enough for this subtask.
- Alice sends the number (16 bits).
- Bob sends m bits (contents does not matter, only to let circuit() directly know m)
- Circuit performs $m-1$ times of addition
- Assuming each addition needs 80 gates, there are 80000 gates in total.
- Expected score: 12 points.

How to implement addition?

- 1-bit adder
- Input 3 bits: a, b, c
- Output 2 bits: s1, s0 (the binary form of $A+B+C$ is $S 1$ S0)
- $\mathrm{SO}=\mathrm{a}$ XOR b XOR c
- S 1 = (a AND b) or ((a XOR b) AND c)
- 5 gates
- 16-bit adder
- Cascading 16 1-bit adders
- For the three inputs of the 1-bit adders, two of them come from input numbers, and the other is the carry bit from the lower position.
- The carry bit is initially 0 , and the overflowed carry bit is discarded (equivalent to modulo 2^{16})
- At most 80 gates (with optimization chances)

Subtask 4

- $n=26$, names appearing in order, no duplicate letters
- Means that Bob's input can be arranged as an $n \times n 0 / 1$-matrix
- Alice sends the 26 numbers in the order from a to $z(26 \times 16$ bits)
- Bob sends the 0/1-matrix (26×26 bits)
- Circuit performs AND and addition according to the matrix
- Needs $26 \times 26 \times 16$ AND-s and 26×26 additions, which is far below the limit of 10^{7} gates.
- Expected score: 24 points.
- Can obtain 36 points combined with Subtasks 1~3.

Subtask 5

- Based on Subtask 4, but the names may not be ordered.
- Nevertheless, Bob knows all names.
- His input can still be arranged as an $n \times n 0-1$ matrix.
- If Alice and Bob follow the same order (e.g., lexicographical), numbers sent from Alice can still correspond to Bob's matrix.
- However, this order may be different from the order of answer output.
- Alice sends an extra 26×26 0/1-matrix (where there are exactly one element 1 from each row and from each column), so that Circuit can rearrange the order of the answers.
- Expected score: 48 points.
- Can obtain 60 points combined with Subtasks 1~3.

Subtask 6

- n is not restricted to equal 26 , and may be any value no more than 30 .
- There is nothing special. You should pass this subtask unless your solution fails strangely.
- The original purpose to place a subtask of $n=26$ is to facilitate debugging.
- Expected score: 54 points.
- Can obtain 66 points combined with Subtasks 1~3, which is the maximal score achieved during the competition.
- There also exists another approach of $16 \times 19 \times n \times m$, where the names are sent from Alice and Bob to Circuit. This can also get 66 points.

Subtasks 7~9

- Subtask 7: $n=676, m \leq 1000$, names are in order.
- Subtask 8: names may be out of order.
- Assuming we can solve 7 , then how to do 8 ?
- We need a method to adjust the output order.
- It is too inefficient to adopt an $n \times n 0 / 1$-matrix!
- Considering there are n ! possible permutations for n elements, the lower bound is to use $\log _{2} n!=O(n \log n)$ bits to encode a permutation, to be performed by Circuit
- We now provide a construction

How to implement an $O(n \log n)$ permutation?

- For example, we need to rearrange 20 elements to the ordered state.
- Split the array into the upper and the lower halves, each with 10 elements.
- Swap the elements up and down, so that every pair of numbers with difference 10 appears one upside and the other downside.
- It can be proved that it is always possible to do so.

0	13	16	5	2	18	12	7	11	9	0	14	16	5	2	18	3	7	11	9
15	14	4	1	17	19	3	6	8	10	15	13	4	1	17	19	12	6	8	10
swap swap										Every pair of numbers with difference 10 appears one upside and the other downside									

How to implement an $O(n \log n)$ permutation?

- Recursively process the upper half and the lower half, so that the ones-place becomes all correct.

0	14	16	5	2	18	3	7	11	9
15	13	4	1	17	19	12	6	8	10

Every pair of numbers with difference 10
appears one upside and the other downside

- Finally, swap the elements up and down, so that all elements become correct.

0	11	2	3	14	5	16	7	18	9	0	1	2	3	4	5	6	7	8	9
10	1	12	13	4	15	6	17	8	19	10	11	12	13	14	15	16	17	18	19
	swap			swap		swap		swap											

How to implement an $O(n \log n)$ permutation?

- There are $n / 2$ chances of optional swapping before recursion and after recursion, respectively. We can use $n / 2$ bits each, to record whether to swap.
- It is similar when n is odd. There are $\left\lfloor\frac{n}{2}\right\rfloor$ chances of optional swapping before and after recursion, respectively. Not going into details here.
- Let $T(n)$ denote the number of bits to encode a permutation of n elements. Then $T(n)=2\left\lfloor\frac{n}{2}\right\rfloor+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+T\left(\left\lceil\frac{n}{2}\right\rceil\right)$. According to the master theorem, $T(n)=O(n \log n)$.

Full-Score Algorithm

- Convert each person and each letter to a 4-tuple ($\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{T}$).
- A person with name X and number Y converts to ($X, X, Y, 0$).
- A letter with sender P and receiver Q converts to ($P, Q, 0,1$).
- (Assuming each string is converted to a 19 -bit integer.)
- Sort all tuples by U first then V.
- The sorting algorithm will be introduced later.
- Consider all tuples in order, maintaining a temporary variable C:
- When meeting an element of $\mathrm{T}=0$ (person), assign: $\mathrm{C}<-$ (W of the current element)
- When meeting an element of $\mathrm{T}=1$ (letter), assign: (W of the current element) <- C
- At this point, all letters are assigned with the sender's number.

Full-Score Algorithm

- Next, sort all tuples by V first then T (descending).
- Consider all tuples in order, maintaining a temporary variable S (initially 0):
- At an element of $\mathrm{T}=1$ (letter), assign: $\mathrm{S}<-\mathrm{S}+(\mathrm{W}$ of the current element)
- At an element of $\mathrm{T}=0$ (person), assign: (W of the current element) <- S ; $\mathrm{S}<-0$
- At this point, all persons are assigned with the correct computation result.
- Sort all tuples by T first then U .
- Now the first n elements are persons.
- Finally, adopt the $O(n \log n)$ permutation to rearrange the persons into the order of Alice's input, and output the result.

How to implement sorting?

- Conventional $O(n \log n)$ sorting (e.g., quicksort, mergesort, heapsort) cannot be directly implemented in circuits.
- But we can find that:
- Alice and Bob can sort their own elements in advance, respectively.
- Circuit only needs to merge two sorted arrays.
- We can use $O(n \log n)$ in-place merge.
- Note that the conventional $O(n)$ merging is still unimplementable in circuits.

Final Algorithm

- Alice sends to Circuit:
- n 4-tuples of persons, sorted by name U.
- The bits encoding the permutation which can rearrange n persons from ordered by U into ordered by Alice's input (i.e., output order).
- Bob sends to Circuit:
- m 4-tuples of letters, sorted by sender U.
- The bits encoding the permutation which can rearrange m letters from ordered by U into ordered by V.

Final Algorithm

- Circuit's computation:

- After receiving the 4-tuples, merge two sorted arrays (first U then V).
- Perform the first sequential scan, so that the letters are assigned with senders' numbers.
- Undo the previous merge (which can be implemented by recording whether each comparison leads to a swap).
- Apply Bob's permutation, to rearrange the letters from ordered by U into ordered by V.
- Merge two sorted arrays again (first U then T descending).
- Perform the second sequential scan, so that each person gets the correct result.
- Undo the previous merge.
- Apply Alice's permutation, to rearrange the persons into Alice's input order.
- Output the answer.
- Expected score: 100 points.

Possible but Unnecessary Optimizations

- Constant propagation: e.g., 0 AND $x=0,0$ OR $x=x$
- "Undefined" propagation: e.g., undefined $\mathrm{XOR} x=$ undefined
- Dead circuit optimization: If the result of a computation gate is never used (directly or indirectly) by any output, the gate can be eliminated.
- Enable less thinking when writing code.
- Duplicate circuit optimization: Merge two computation gates with the same operation type and dependency gates.
- Help check for problems in the code.
- Reference answer needs about 10^{7} gates, or about 8×10^{6} after optimization.

The End

