
Central European Olympiad in Informatics 2017
July 2017, Ljubljana, Slovenia

Problem Solutions - Day 1

One-Way Streets
Tomaž Hočevar

The problem is asking whether individual edges in a directed version of the given graph must have
a fixed orientation to maintain reachability between the given pairs of nodes.

Cycles. Consider a cycle in the graph. We can direct all the edges to form a directed cycle in one
or the other direction. This way all nodes are reachable from each other within a cycle. Compress
the cycle into a single node and repeat the process until there are no more cycles left and we’re left
with a forest. We could start with any cycle in any direction, therefore the answer for all compressed
edges is B. Because there is a unique path between a pair of nodes (if they are part of the same
component) these edges will have a fixed orientation. Just direct the edges along the path from the
start to destination. This solves the problem but not efficiently enough.

Bridges. After compressing the cycles we’re left with a tree. The edges in this tree are the bridges
of the original graph, which we can find in linear time with Tarjan’s algorithm. This solves the second
subproblem.

Lowest Common Ancestor. The only source of inefficiency stems from directing the edges in
a tree. Going over every edge in every path takes too much time and we might direct the same edge
several times. Can we avoid this? One approach is to process the paths in a helpful order. Let’s root
the tree at some node and process it in O(n log n) for answering lowest common ancestor queries in
O(log n). We can split every path between two nodes in two parts — one going up the tree and the
other one going down — and then solve the problem for paths going from a node towards the root. We
will process the paths by their lowest common ancestors starting with those nearest the root. When
directing the edges on a path towards the root we might at some point reach an already directed edge
and all edges from there on will already be directed in the same direction. Because we are guaranteed
a solution exists this direction will also be the correct one otherwise we would have a contradiction.

Sure Bet
Tomaž Hočevar

The problem is asking us to maximize the value min(
∑

ai − na − nb,
∑

bj − na − nb), where ai
represent the odds for placed bets on the first outcome and na the number of them, while bj and nb

stand for the corresponding values for the second outcome.
Brute force. The straight-forward way to solve the problem is to simply try all possible subsets

of bets. There is 22n of them, which is small enough for n ≤ 10 and solves the first subproblem.
Greedy. Let’s simplify the formula we’re trying to maximize. If we subtract 1 from every quota,

the formula simplifies to min(
∑

ai − nb,
∑

bj − na). Note that the two outcomes are independent for
a fixed na and nb — the exact set of odds we choose for the first outcome does not affect the optimal
choice of bets for the second outcome. Therefore, it makes sense to sort the values ai and bi. We can
choose the na largest ai and nb largest values bi for every pair of na and nb. This gives us a O(n2)
solution for the second subproblem.

Ternary search. Consider what is the score for a fixed value of na and different values of nb. As
we increase nb the score grows until the term

∑
bj −na becomes greater than

∑
ai−nb at which point

it starts to decrease. Therefore, we can use ternary search to find its maximum or a binary search
over the list of differences in score for consecutive values of nb. Precompute prefix sums to compute
the score for a given pair na and nb in O(1). Time complexity of this solution is O(n log n).

1



Linear solution. There is in fact a linear solution assuming the values are already sorted. We
can try to visualize what is going on as we try different values of na and nb. For every ai that we bet
on, we increase the first value in the minimum by ai and decrease the other one by 1, while trying to
maintain the lower one as large as possible. This would suggest that if nb is the optimal choice for
na then as we increase na to na + 1 we should also increase nb or keep it at the same value but not
decrease it.

Let A =
∑

na
ai − nb and B =

∑
nb

bj − na where nb is the optimal choice for na. As we increase
na by 1, we get A′ = A+ a and B′ = B − 1. We will handle two cases:

1. A′ ≥ B′. Because B′ is already the smaller of the two values decreasing nb would only make the
minimum smaller.

2. A′ < B′. Suppose that decreasing nb would give us a better solution. The new score in this case
min(A′ +1, B′ − b) would have to be larger than the previous one min(A′, B′) = A′. This would
imply A′ < B′− b. Rewriting it we get A+1 < B− b−a. This means that nb is not the optimal
solution for na as we assumed because we could decrease nb and obtain a better solution for na;
we have a contradiction.

We don’t have to restart the search for nb from scratch for every value of na in increasing order.
Instead, we can simply increase nb until we find the maximum for a given na. For na + 1 we start the
search for nb from where we finished previously, overall making a single pass over all values of nb.

Mousetrap
Vid Kocijan

Exhaustive search. A minimax algorithm with full exhaustive search is a slow solution with no
simple implementation. With the following observation, an exhaustive search solution becomes much
cleaner and easier to implement. It doesn’t make sense to block a passage after cleaning some other
passage. Cleaning the passage increases the mouse’s movement options, therefore Dumbo would be
better off blocking the other passage before cleaning one.

If Dumbo leaves the mouse running, it will eventually get stuck. Before the mouse gets stuck
Dumbo will only block passages. Which ones should be blocked is a matter of the exhaustive search.
Once the mouse is stuck, Dumbo will block all the side passages leading away from the path to the
trap and then clean that path. The mouse will have no choice but to run directly into the trap.

Mouse starts the game next to the trap. Root the tree so that the root corresponds to the
trap. What happens if Dumbo just leaves the mouse running until it gets stuck? The mouse will get
stuck in one of the leaves, Dumbo will block all the side edges on the path leading from this leaf to
the root and then clean the dirty edges in this path.

We can calculate the exact number of moves Dumbo needs to win the game if the mouse is caught
in a certain leaf. Let’s call this the weight of the leaf and denote the weight of a leaf l with wl. Note
that if Dumbo leaves the mouse running around, it will move to the leaf with the largest weight. On
the other hand, Dumbo will try to block the mouse from reaching leaves with large weights.

Suppose the mouse is in node v. Because the mouse starts at depth 1, we can safely assume it only
moves down the tree towards the leaves. Node v has i children u1 . . . ui. Without loss of generality
we assume that u1 is the optimal choice for the mouse and u2 the second best. Dumbo will want to
block the passage to the node u1. Does this effect weights of the leaves in subtrees u2 . . . ui? Because
edge (v, u1) is a side edge from a path from any leaf in subtrees u2 . . . ui to the root, it’s already part
of their weights and the edge (v, u1) has to be blocked anyway. So blocking the passage next to the
mouse doesn’t change the weights of the leaves in the subtrees. Hence, Dumbo will block the best
possible child of the node and mouse will traverse the second best.

From here on we can generalize the definition of weights for any node. Weight of a node v is the
number of moves Dumbo needs to win if it’s his turn and the mouse is currently in node v. Dumbo

2



will block the edge to the heaviest child and the mouse will traverse the edge to the second heaviest
one. Hence, weight of a node v is the weight of second heaviest child or 1 if v only has one child.
Weights of nodes can easily be calculated with one tree traversal which takes linear time. The number
of moves in the game is equal to the weight of the mouse’s starting node.

General case How does the game change in the general case? The mouse doesn’t start the game
at depth 1, which means it might make a few moves up the tree before going down. Dumbo cannot
block upgoing edge, because he would block mouse from reaching the trap. As soon as the mouse
makes a move down the tree, the game continues as described in the previous section.

When selecting the next edge to block, Dumbo must therefore not limit himself to outgoing edges
of the mouse’s current location. Possible candidates are also the side passage on the path from the
mouse to the trap.

In the starting position of the game, a path P leads from the mouse to the trap. Dumbo may not
block edges in P , so weights of nodes in P are undefined. There are multiple subtrees attached to P .
Each of these subtrees (actually their roots) has its weight as defined in the previous section.

Suppose the mouse arrives into a subtree Si. Any blockade Dumbo made on side edges of P below
the depth of Si do not count towards its weight wi. Let’s say there were Bi such moves, therefore
Dumbo has to make Bi +wi moves in total. What is the minimal Bi +wi if Dumbo plays optimally?

We can find this by a binary search over the total number of Dumbo’s moves. Whether Dumbo
can win in at most X moves can be verified by simulating a mouse’s run up the path P and testing if
all the side edges i with wi +Bi > X have been blocked.

We can present each subtree Si with pair (d(v, Si), wi), where d(v, Si) is distance of subtree Si from
node v. Dumbo can only block path to this subtree in first d(v, Si) rounds, then the mouse reaches it.
We sort pairs by first component. Let L be this sorted list of pairs. We will use variable B to count
the number of blocked side paths. Initially B := 0.

For each pair Li in L: If Li(2) +B > X the passage has to be blocked and B := B + 1. If at any
point Li(2) + B > X and B > Li(1) mouse reached a subtree before Dumbo could block the passage
to it, which means Dumbo can’t win in X moves. Otherwise, we found a way for Dumbo to win in X
moves.

Each bisection iteration takes linear time (the list L doesn’t change, it can be reused multiple
times). Hence, total running time is O(n log n).

3


	Day One
	One-Way Streets
	Sure Bet
	Mousetrap


