Construction of Highway

There are N cities in JOI Kingdom, which are indexed by the numbers from 1 to N. City 1 is the capital city. Each city has a value called liveliness and the initial value of liveliness of city $i(1 \leq i \leq N)$ is C_{i}.

Road in JOI Kingdom connects two different cities bidirectionally. Initially, there is no road in JOI Kingdom. You have planned $N-1$ constructions of roads. The j-th construction $(1 \leq j \leq N-1)$ is planned to be done in the follwing way.

- Two cities, A_{j} and B_{j}, are appointed, when one can go from city 1 to city A_{j} and cannot go from city 1 to city B_{j} by using only roads constructed at that time.
- You construct a road connecting city A_{j} and city B_{j}. The cost of this construction is the number of pairs of cities (s, t) satisfying the following conditions:

City s and City t lie on the shortest path between city 1 and city A_{j}, and when one goes from city 1 to city A_{j} he arrives city s before city t, and the value of liveliness of city s is strictly larger than that of city t.

Here, cities lying on the path between city 1 and city A_{j} include city 1 and city A_{j}. Notice that the shortest path between city 1 and city A_{j} is unique.

- The values of liveliness of all cities lying on the path between city 1 and city A_{j} change to the value of liveliness of city B_{j}.

You want to know the cost of each construction.

Task

Given the data of cities and constructions of roads, write a program which calculates the cost of each construction.

Input

Read the following data from the standard input.

- The first line of input contains a integer N. This means there are N cities in JOI Kingdom.
- The second line of input contains N space separated integers $C_{1}, C_{2}, \cdots C_{N}$. This means the initial value of liveliness of city $i(1 \leq i \leq N)$ is C_{i}.
- The j-th line $(1 \leq j \leq N-1)$ of following $N-1$ lines contains two space separated integers A_{j}, B_{j}. This means city A_{j} and city B_{j} are appointed for the j-th construction of road.

The 17th Japanese Olympiad in Informatics (JOI 2017/2018)
Spring Training Camp/Qualifying Trial

Output

Write $N-1$ lines to the standard output. The j-th line $(1 \leq j \leq N-1)$ of output contains the cost of the j-th construction of road.

Constraints

All input data satisfy the following conditions.

- $1 \leq N \leq 100000$.
- $1 \leq C_{i} \leq 1000000000(1 \leq i \leq N)$.
- $1 \leq A_{j} \leq N(1 \leq j \leq N-1)$.
- $1 \leq B_{j} \leq N(1 \leq j \leq N-1)$.
- By using roads constructed before the j-th construction, one can go from city 1 to city A_{j} and cannot go from city 1 to city $B_{j}(1 \leq j \leq N-1)$.

Subtask

There are 3 subtasks. The score and additional constraints of each subtask are as follows:

Subtask 1 [7 points]

- $N \leq 500$.

Subtask 2 [9 points]

- $N \leq 4000$.

Subtask 3 [84 points]

There are no additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1			
5			0	
1	2	3	4	5

In Sample Input 1, constructions are done as follows:

- In the first construction, there are no pairs (s, t) satisfying the conditions, so the cost is 0 . A road connecting city 1 and city 2 is constructed and the value of liveliness of city 1 changes to 2 .
- In the second construction, there are no pairs (s, t) satisfying the conditions too, so the cost is 0 . A road connecting city 2 and city 3 is constructed and the values of liveliness of city 1 and city 2 change to 3 .
- In the third construction, there are no pairs (s, t) satisfying the conditions too, so the cost is 0 . A road connecting city 2 and city 4 is constructed and the values of liveliness of city 1 and city 2 change to 4 .
- In the fourth construction, two pairs $(s, t)=(1,3),(2,3)$ satisfy the conditions, so the cost is 2 . A road connecting city 3 and city 5 is constructed and the values of liveliness of city 1 , city 2 and city 3 change to 5.

Sample Input 2			Sample Output 2							
10								0		
1	7	3	4	8	6	2	9	10	5	0
1	2							0		
1	3								1	
2	4								1	
3	5								0	
2	6									
3	7									
4	8									
5	9									
6	10									

