

Problem A. Abstract Circular Cover

Input file:	standard input
Output file:	standard output
Time limit:	20 seconds
Memory limit:	512 mebibytes

The time limit is a bit strict.

There are *n* distinct points on a circle, numbered from 0 to n-1 inclusive in the clockwise order. A *circular segment* of length ℓ $(1 \leq \ell \leq n)$ with start at i $(0 \leq i \leq n-1)$ is a tuple of ℓ consecutive points in the clockwise order, starting with i (in other words, a tuple of points with numbers $i, (i+1) \mod n, (i+2) \mod n, \ldots, (i+\ell-1) \mod n$). Circular segments of length n with starts at $0, 1, \ldots, n-1$ are considered to be pairwise different, despite containing the same set of points.

An integer cost $c_{i,\ell}$ is assigned to each circular segment. For each k from 1 to n, find the minimum total cost of exactly k circular segments, such that each of the n points is contained in exactly one of them.

Note that there are **no** properties that values $c_{i,\ell}$ satisfy, except being comparatively small positive integers. That is, any $n \times n$ array of integers between 1 and 10^6 is a valid test for this problem.

Input

The first line contains an integer n $(1 \le n \le 850)$, the number of points on the circle. The (i+1)-st $(0 \le i \le n-1)$ of the following n lines contains n space-separated integers $c_{i,1}, c_{i,2}, \ldots, c_{i,n}$ $(1 \le c_{i,\ell} \le 10^6 \text{ for } 1 \le \ell \le n)$.

Output

Output n space-separated integers: k-th of them should be the minimum total cost of k circular segments that cover every point exactly once.

Examples

standard input	standard output
3 10 12 23 7 4 11 8 5 3	3 12 25
1 15	15