Problem A. Abstract Circular Cover

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
20 seconds
512 mebibytes

The time limit is a bit strict.
There are n distinct points on a circle, numbered from 0 to $n-1$ inclusive in the clockwise order. A circular segment of length $\ell(1 \leq \ell \leq n)$ with start at $i(0 \leq i \leq n-1)$ is a tuple of ℓ consecutive points in the clockwise order, starting with i (in other words, a tuple of points with numbers $i,(i+1) \bmod n,(i+2) \bmod n, \ldots,(i+\ell-1) \bmod n)$. Circular segments of length n with starts at $0,1, \ldots, n-1$ are considered to be pairwise different, despite containing the same set of points.
An integer cost $c_{i, \ell}$ is assigned to each circular segment. For each k from 1 to n, find the minimum total cost of exactly k circular segments, such that each of the n points is contained in exactly one of them.
Note that there are no properties that values $c_{i, \ell}$ satisfy, except being comparatively small positive integers. That is, any $n \times n$ array of integers between 1 and 10^{6} is a valid test for this problem.

Input

The first line contains an integer $n(1 \leq n \leq 850)$, the number of points on the circle. The $(i+1)$-st $(0 \leq i \leq n-1)$ of the following n lines contains n space-separated integers $c_{i, 1}, c_{i, 2}, \ldots, c_{i, n}\left(1 \leq c_{i, \ell} \leq 10^{6}\right.$ for $\left.1 \leq \ell \leq n\right)$.

Output

Output n space-separated integers: k-th of them should be the minimum total cost of k circular segments that cover every point exactly once.

Examples

standard input		standard output
3	31225	
10 12 23 4 11 8 5		
1		15

