Problem I. Shortest Bridge

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

There is a city whose shape is a $1,000 \times 1,000$ square. The city has a big river, which flows from the north to the south and separates the city into just two parts: the west and the east.

Recently, the city mayor has decided to build a highway from a point s on the west part to a point t on the east part. A highway consists of a bridge on the river, and two roads: one of the roads connects s and the west end of the bridge, and the other one connects t and the east end of the bridge. Note that each road doesn't have to be a straight line, but the intersection length with the river must be zero.

In order to cut building costs, the mayor intends to build a highway satisfying the following conditions:

- Since bridge will cost more than roads, at first the length of a bridge connecting the east part and the west part must be as short as possible.
- Under the above condition, the sum of the length of two roads is minimum.

Your task is to write a program computing the total length of a highway satisfying the above conditions.

Input

At first, we refer to a point on the city by a coordinate (x, y): the distance from the west side is x and the distance from the north side is y.

The first line of the input contains four integers s_x , s_y , t_x , and t_y $(0 \le s_x, s_y, t_x, t_y \le 1,000)$: points s and t are located at (s_x, s_y) and (t_x, t_y) respectively.

The next line contains an integer N ($2 \leq N \leq 20$), where N is the number of points composing the west riverside. Each of the following N lines contains two integers wx_i and wy_i ($0 \leq wx_i, wy_i \leq 1,000$): the coordinate of the *i*-th point of the west riverside is (wx_i, wy_i). The west riverside is a polygonal line obtained by connecting the segments between (wx_i, wy_i) and ($wx_i + 1, wy_i + 1$) for all $1 \leq i \leq N - 1$.

The next line contains an integer M ($2 \leq M \leq 20$), where M is the number of points composing the east riverside. Each of the following M lines contains two integers ex_i and ey_i ($0 \leq ex_i, ey_i \leq 1,000$): the coordinate of the *i*-th point of the east riverside is (ex_i, ey_i). The east riverside is a polygonal line obtained by connecting the segments between (ex_i, ey_i) and ($ex_i + 1, ey_i + 1$) for all $1 \leq i \leq M - 1$.

You can assume that test cases are under the following conditions.

- wy_1 and ey_1 must be 0, and wy_N and ey_M must be 1,000.
- Each polygonal line has no self-intersection.
- Two polygonal lines representing the west and the east riverside have no cross point.

- A point s must be on the west part of the city. More precisely, s must be on the region surrounded by the square side of the city and the polygonal line of the west riverside and not containing the east riverside points.
- A point t must be on the east part of the city. More precisely, t must be on the region surrounded by the square side of the city and the polygonal line of the east riverside and not containing the west riverside points.
- Each polygonal line intersects with the square only at the two end points. In other words, $0 < wx_i, wy_i < 1,000$ holds for $2 \le i \le N 1$ and $0 < ex_i, ey_i < 1,000$ holds for $2 \le i \le M 1$.

Output

Output single-space separated two numbers in a line: the length of a bridge and the total length of a highway (i.e. a bridge and two roads) satisfying the above mayor's demand. The output can contain an absolute or a relative error no more than 10^{-8} .

standard input	standard output
200 500 800 500	100 600
3	
400 0	
450 500	
400 1000	
3	
600 0	
550 500	
600 1000	
300 300 700 100	
5	
300 0	
400 100	
300 200	
400 300	
400 1000	
4	
700 0	
600 100	
700 200	
700 1000	

Examples