Problem I. Shortest Bridge

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 512 mebibytes

There is a city whose shape is a $1,000 \times 1,000$ square. The city has a big river, which flows from the north to the south and separates the city into just two parts: the west and the east.

Recently, the city mayor has decided to build a highway from a point s on the west part to a point t on the east part. A highway consists of a bridge on the river, and two roads: one of the roads connects s and the west end of the bridge, and the other one connects t and the east end of the bridge. Note that each road doesn't have to be a straight line, but the intersection length with the river must be zero.

In order to cut building costs, the mayor intends to build a highway satisfying the following conditions:

- Since bridge will cost more than roads, at first the length of a bridge connecting the east part and the west part must be as short as possible.
- Under the above condition, the sum of the length of two roads is minimum.

Your task is to write a program computing the total length of a highway satisfying the above conditions.

Input

At first, we refer to a point on the city by a coordinate (x, y) : the distance from the west side is x and the distance from the north side is y.
The first line of the input contains four integers s_{x}, s_{y}, t_{x}, and $t_{y}\left(0 \leq s_{x}, s_{y}, t_{x}, t_{y} \leq 1,000\right)$: points s and t are located at $\left(s_{x}, s_{y}\right)$ and $\left(t_{x}, t_{y}\right)$ respectively.
The next line contains an integer $N(2 \leq N \leq 20)$, where N is the number of points composing the west riverside. Each of the following N lines contains two integers $w x_{i}$ and $w y_{i}$ $\left(0 \leq w x_{i}, w y_{i} \leq 1,000\right)$: the coordinate of the i-th point of the west riverside is $\left(w x_{i}, w y_{i}\right)$. The west riverside is a polygonal line obtained by connecting the segments between $\left(w x_{i}, w y_{i}\right)$ and $\left(w x_{i}+1, w y_{i}+1\right)$ for all $1 \leq i \leq N-1$.
The next line contains an integer $M(2 \leq M \leq 20)$, where M is the number of points composing the east riverside. Each of the following M lines contains two integers $e x_{i}$ and $e y_{i}$ $\left(0 \leq e x_{i}, e y_{i} \leq 1,000\right)$: the coordinate of the i-th point of the east riverside is $\left(e x_{i}, e y_{i}\right)$. The east riverside is a polygonal line obtained by connecting the segments between (exi,eyi) and $\left(e x_{i}+1, e y_{i}+1\right)$ for all $1 \leq i \leq M-1$.
You can assume that test cases are under the following conditions.

- $w y_{1}$ and $e y_{1}$ must be 0 , and $w y_{N}$ and $e y_{M}$ must be 1,000 .
- Each polygonal line has no self-intersection.
- Two polygonal lines representing the west and the east riverside have no cross point.
- A point s must be on the west part of the city. More precisely, s must be on the region surrounded by the square side of the city and the polygonal line of the west riverside and not containing the east riverside points.
- A point t must be on the east part of the city. More precisely, t must be on the region surrounded by the square side of the city and the polygonal line of the east riverside and not containing the west riverside points.
- Each polygonal line intersects with the square only at the two end points. In other words, $0<w x_{i}, w y_{i}<1,000$ holds for $2 \leq i \leq N-1$ and $0<e x_{i}, e y_{i}<1,000$ holds for $2 \leq i \leq M-1$.

Output

Output single-space separated two numbers in a line: the length of a bridge and the total length of a highway (i.e. a bridge and two roads) satisfying the above mayor's demand. The output can contain an absolute or a relative error no more than 10^{-8}.

Examples

