Problem J. Longest Shortest Path

Input file
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

You are given a directed graph and two nodes s and t. The given graph may contain multiple edges between the same node pair but not self loops. Each edge e has its initial length d_{e} and the $\operatorname{cost} c_{e}$. You can extend an edge by paying a cost. Formally, it costs $x \cdot c_{e}$ to change the length of an edge e from d_{e} to $d_{e}+x$. (Note that x can be a non-integer). Edges cannot be shortened.
Your task is to maximize the length of the shortest path from node s to node t by lengthening some edges within cost P. You can assume that there is at least one path from s to t.

Input

The first line of the input contains five integers N, M, P, s, and $t: N(2 \leq N \leq 200)$ and M $(1 \leq M \leq 2,000)$ are the number of the nodes and the edges of the given graph respectively, P $\left(0 \leq P \leq 10^{6}\right)$ is the cost limit that you can pay, and s and $t(1 \leq s, t \leq N, s \neq t)$ are the start and the end node of objective path respectively. Each of the following M lines contains four integers v_{i}, u_{i}, d_{i} and c_{i}, which mean there is an edge from v_{i} to $u_{i}\left(1 \leq v_{i}, u_{i} \leq N, v_{i} \neq u_{i}\right)$ with the initial length $d_{i}\left(1 \leq d_{i} \leq 10\right)$ and the cost $c_{i}\left(1 \leq c_{i} \leq 10\right)$.

Output

Output the maximum length of the shortest path from node s to node t by lengthening some edges within cost P. The output can contain an absolute or a relative error no more than 10^{-6}.

Examples

			standard input		
3	2	3	1	3	6
1	2	2	1		
2	3	1	2	standard output	
3	3	2	1	3	2.5000000
1	2	1	1		
2	3	1	1		
1	3	1	1	4.25	
3	4	5	1	3	
1	2	1	2		
2	3	1	1		
1	3	3	2		
1	3	4	1		

