Problem B. Jembatan

Time limit: 2 seconds Memory limit: 512 megabytes

St. Petersburg terletak pada n pulau yang terhubung oleh m jembatan. Pulau-pulau dinomori dengan bilangan bulat dari 1 sampai n, dan jembatan — dari 1 sampai m. Setiap jembatan menghubungkan dua buah pulau yang berbeda. Beberapa jembatan dibangun di era Pyotr yang Agung, dan beberapa baru dibangun belakangan ini. Itu sebabnya jembatan yang berbeda mempunyai batas berat yang berbeda. Jelasnya, hanya mobil-mobil dengan berat yang tidak melebihi d_i yang bisa dikendarai melewati jembatan ke-i. Terkadang beberapa jembatan di St. Petersburg sedang direnovasi, tetapi ini belum tentu membuat jembatan semakin kuat, sehingga beberapa d_i bisa bertambah ataupun berkurang. Anda ingin membuat sebuah produk yang akan membantu penduduk dan pengunjung kota. Saat ini, Anda sedang membuat sebuah modul yang bisa melakukan dua jenis perintah:

- 1. Batas berat dari dari jembatan b_i berubah menjadi r_i .
- 2. Hitung banyaknya pulau yang bisa dicapai oleh mobil dengan berat w_i dari pulau s_i .

Jawablah semua perintah tipe kedua.

Input

Baris pertama berisi dua buah bilangan bulat n dan m — banyaknya pulau dan jembatan di St. Petersburg $(1 \le n \le 50.000, 0 \le m \le 100.000)$.

Baris ke-i pada m baris selanjutnya berisi tiga buah bilangan bulat u_i , v_i , dan d_i yang mendeskripsikan jembatan yang menghubungkan pulau u_i dan v_i , yang batas berat awalnya sama dengan d_i ($1 \le u_i$, $v_i \le n$; $u_i \ne v_i$; $1 \le d_i \le 10^9$).

Baris selanjutnya berisi sebuah bilangan bulat q — banyaknya perintah (1 $\leq q \leq 100.000$). q baris selanjutnya berisi perintah-perintah.

Deskripsi dari setiap perintah diawali dengan sebuah bilangan bulat t_i ($t_i \in \{1, 2\}$).

Jika $t_j = 1$, perintah tersebut adalah perintah jenis pertama, kemudian diikuti oleh dua buah bilangan bulat b_j dan r_j , yang artinya batas berat dari jembatan b_j berubah menjadi r_j $(1 \le b_j \le m, 1 \le r_j \le 10^9)$.

Jika $t_j = 2$, perintah tersebut adalah perintah jenis kedua, kemudian diikuti oleh dua buah bilangan bulat s_j dan w_j , yang mendeskripsikan sebuah mobil dengan berat w_j yang berada pada pulau s_j $(1 \le s_j \le n, 1 \le w_j \le 10^9)$.

Output

Untuk tiap perintah tipe kedua, cetak jawaban pada baris yang berbeda.

Scoring

Subtask 1 (points: 13)

 $n \le 1.000, m \le 1.000, q \le 10.000.$

Subtask 2 (points: 16)

Pulau dan jembatan membentuk sebuah rantai, m = n - 1, $u_i = i$, $v_i = i + 1$ $(1 \le i \le m)$.

Subtask 3 (points: 17)

Pulau dan jembatan membentuk sebuah complete binary tree, $n=2^k-1$, m=n-1, $u_i=\lfloor\frac{i+1}{2}\rfloor$, $v_i=i+1$ $(1\leq k\leq 15,\ 1\leq i\leq m)$.

Subtask 4 (points: 14)

Semua t_j sama dengan 2.

Subtask 5 (points: 13)

Pulau dan jembatan membentuk sebuah pohon, m = n - 1.

Subtask 6 (points: 27)

Tidak ada batasan tambahan.

Examples

input	output
3 4	3
1 2 5	2
2 3 2	3
3 1 4	
2 3 8	
5	
2 1 5	
1 4 1	
2 2 5	
1 1 1	
2 3 2	
7 8	1
1 2 5	7
1 6 5	7
2 3 5	5
2 7 5	7
3 4 5	7
4 5 5	4
5 6 5	
6 7 5	
12	
2 1 6	
1 1 1	
2 1 2	
1 2 3	
2 2 2	
1 5 2	
1 3 1	
2 2 4	
2 4 2	
1 8 1	
2 1 1	
2 1 3	

Note

Garis hijau merepresentasikan jembatan yang dapat dilalui mobil pada perintah. Simpul hijau merepresentasikan pulau-pulau yang dapat dicapai oleh mobil. Tanda panah menunjuk pulau tempat mobil berada pada awalnya.

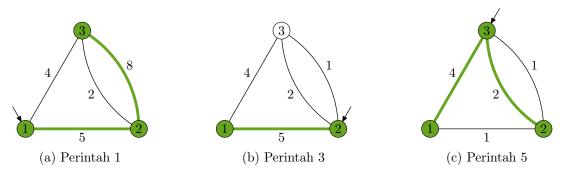


Рис. 1: Gambar untuk kasus uji pertama

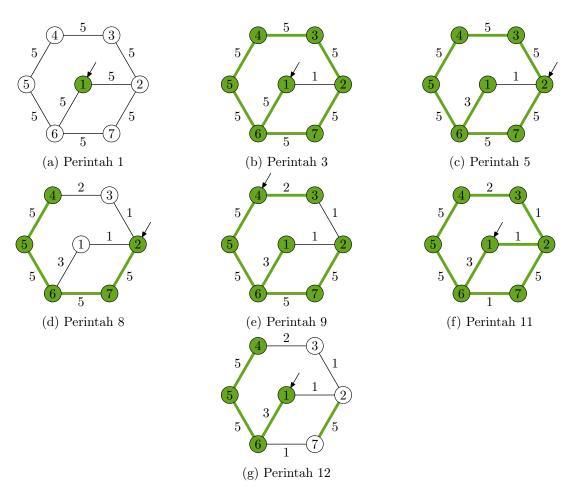


Рис. 2: Gambar untuk kasus uji kedua