Задача В. Мосты

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Общая протяжённость всех водотоков на территории Санкт-Петербурга достигает 282 км, а их водная поверхность составляет около 7% всей площади города.

Википедия

Санкт-Петербург расположен на n островах, соединенных m мостами. Острова пронумерованы от 1 до n, а мосты — от 1 до m. Каждый мост соединяет два различных острова. Некоторые мосты стоят еще со времен Петра, а некоторые были открыты только в этом году. Поэтому разные мосты могут выдержать разную максимальную нагрузку. А именно, по мосту номер i могут проезжать только машины, вес которых не превосходит d_i . Конечно же, мосты в Санкт-Петербурге иногда ремонтируют, но ремонт не обязательно делает мост прочнее, поэтому иногда d_i могут изменяться: как увеличиваться, так и уменьшаться. Вы разрабатываете продукт, который призван помочь петербуржцам и гостям города. В данный момент вы разрабатываете модуль, которому будут поступать два типа запросов:

- 1. Максимальный вес машины, которая может проехать по мосту b_i , теперь равен r_i .
- 2. Посчитайте количество островов, до которых может доехать машина веса w_j , которая сейчас находится на острове s_i .

Найдите ответы на все запросы второго типа.

Формат входных данных

В первой строке даны два целых числа n и m — количество островов и мостов в Санкт-Петербурге ($1 \le n \le 50\,000,\, 0 \le m \le 100\,000$).

В следующих m строках даны по три целых числа u_i , v_i и d_i , означающих, что i-й мост соединяет острова с номерами u_i и v_i , и изначально по нему может проехать машина с максимальным весом d_i ($1 \le u_i, v_i \le n$; $u_i \ne v_i$; $1 \le d_i \le 10^9$).

В следующей строке дано одно целое число q — количество запросов ($1 \le q \le 100\,000$). В следующих q строках даны запросы. Каждый запрос начинается с целого числа t_j ($t_j \in \{1,2\}$).

Если $t_j=1$, то это запрос первого типа, и далее даны два целых числа b_j и r_j —номер моста и максимальный вес машины, которая теперь может проехать по этому мосту $(1\leqslant b_j\leqslant m,1\leqslant r_j\leqslant 10^9)$. Если $t_j=2$, то это запрос второго типа, и далее даны два целых числа s_j и w_j —номер острова, на котором находится машина, и ее вес $(1\leqslant s_j\leqslant n,1\leqslant w_j\leqslant 10^9)$.

Формат выходных данных

Для каждого запроса второго типа выведите ответ на него в новой строке.

Система оценки

Подзадача 1 (баллы: 13)

 $n \le 1000, m \le 1000, q \le 10000.$

Подзадача 2 (баллы: 16)

Острова и мосты образуют простой путь, m = n - 1, $u_i = i$, $v_i = i + 1$ $(1 \le i \le m)$.

Подзадача 3 (баллы: 17)

Острова и мосты образуют полное двоичное дерево, $n=2^k-1, m=n-1, u_i=\lfloor \frac{i+1}{2} \rfloor, v_i=i+1$ $(1 \le k \le 15, 1 \le i \le m).$

Подзадача 4 (баллы: 14)

Все t_j равны 2.

Подзадача 5 (баллы: 13)

Острова и мосты образуют дерево, m = n - 1.

Подзадача 6 (баллы: 27)

Нет дополнительных ограничений.

Примеры

input	output
3 4	3
1 2 5	2
2 3 2	3
3 1 4	
2 3 8	
5	
2 1 5	
1 4 1	
2 2 5	
1 1 1	
2 3 2	
7 8	1
1 2 5	7
1 6 5	7
2 3 5	5
2 7 5	7
3 4 5	7
4 5 5	4
5 6 5	
6 7 5	
12	
2 1 6	
1 1 1	
2 1 2	
1 2 3	
2 2 2	
1 5 2	
1 3 1	
2 2 4	
2 4 2	
1 8 1	
2 1 1	
2 1 3	

Замечание

На иллюстрациях для каждого запроса второго типа зеленым отмечены мосты, которые выдержат машину, и острова, которые машина сможет посетить. Стрелкой отмечен остров, на котором изначально находится машина.

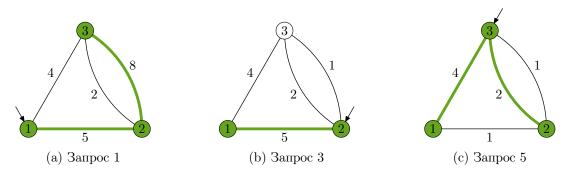


Рис. 1: Иллюстрация к первому тесту

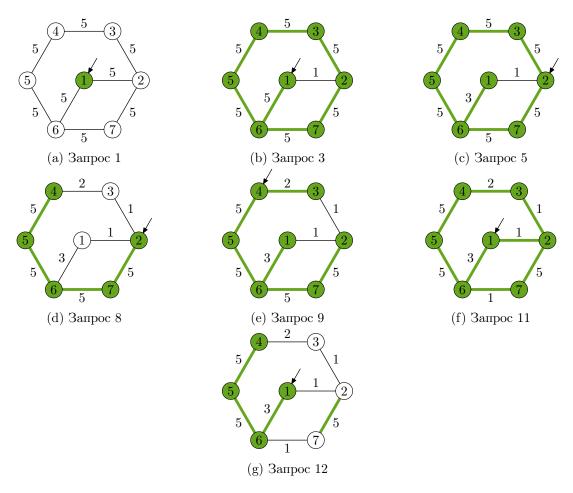


Рис. 2: Иллюстрация ко второму тесту