Pyramid

task: pyramid	input file: stdin	output file: stdout
points: 100	time limit: 2000 ms	memory limit: 1 GB

Archaeologists have just deciphered hieroglyphs on walls of a pyramid. The writings on one of the walls describe N sacred numbers. All numbers which are divisible by at least one of these numbers are also sacred.

The writings on M other walls claim that the Q_{i}-th lowest sacred number has magic properties. The archaeologists would like to know which numbers have the magic properties. Could you help them with that?

Task

You are given N positive integers $A_{1}, A_{2}, \ldots, A_{N}$ and M positive integers $Q_{1}, Q_{2}, \ldots, Q_{M}$. For each $i \in\{1,2, \ldots, M\}$ find the Q_{i}-th lowest positive integer which is divisible by at least one of the integers $A_{1}, A_{2}, \ldots, A_{N}$.

Input

The first line of the input contains two integers N a M. The second line contains space-separated integers $A_{1}, A_{2}, \ldots, A_{N}$. Then, M lines follow. Each of them contains an integer Q_{i}.

It holds $1 \leq N \leq 15$ and $1 \leq M \leq 50$.
For all $i \in\{1,2, \ldots, N\}$ it holds $2 \leq A_{i} \leq 10^{18}$.
For the product of these numbers it holds $A_{1} \cdot A_{2} \cdot \ldots \cdot A_{N} \leq 10^{18}$.
For all $i \in\{1,2, \ldots, M\}$ it holds $1 \leq Q_{i} \leq 10^{18}$.
Each number on the output is lower than or equal to 10^{18}.
Furthermore, in 10% of the testcases $Q_{1}, Q_{2}, \ldots, Q_{M} \leq 10^{6}$.
Furthermore, in 30% of the testcases $N \leq 2$.

Output

Output M lines. The i-th line should contain the Q_{i}-th lowest positive integer which is divisible by at least one of the integers $A_{1}, A_{2}, \ldots, A_{N}$.

Sample

input

5	5			
2	5	7	10	11
1				
2				
3				
10				
20				

input

21
70100
5

5

