Pyramid

task: pyramid	input file: stdin	output file: stdout
points: 100	time limit: 2000 ms	memory limit: 1 GB

Archaeologists have just deciphered hieroglyphs on walls of a pyramid. The writings on one of the walls describe N sacred numbers. All numbers which are divisible by at least one of these numbers are also sacred.

The writings on M other walls claim that the Q_i -th lowest sacred number has magic properties. The archaeologists would like to know which numbers have the magic properties. Could you help them with that?

Task

You are given N positive integers A_1, A_2, \ldots, A_N and M positive integers Q_1, Q_2, \ldots, Q_M . For each $i \in \{1, 2, \ldots, M\}$ find the Q_i -th lowest positive integer which is divisible by at least one of the integers A_1, A_2, \ldots, A_N .

Input

The first line of the input contains two integers $N \neq M$. The second line contains space-separated integers A_1, A_2, \ldots, A_N . Then, M lines follow. Each of them contains an integer Q_i .

It holds $1 \leq N \leq 15$ and $1 \leq M \leq 50$. For all $i \in \{1, 2, ..., N\}$ it holds $2 \leq A_i \leq 10^{18}$. For the product of these numbers it holds $A_1 \cdot A_2 \cdot \ldots \cdot A_N \leq 10^{18}$. For all $i \in \{1, 2, ..., M\}$ it holds $1 \leq Q_i \leq 10^{18}$. Each number on the output is lower than or equal to 10^{18} . Furthermore, in 10 % of the testcases $Q_1, Q_2, \ldots, Q_M \leq 10^6$. Furthermore, in 30 % of the testcases $N \leq 2$.

Output

Output M lines. The *i*-th line should contain the Q_i -th lowest positive integer which is divisible by at least one of the integers A_1, A_2, \ldots, A_N .

Sample

