Problem B. Circle selection

Time limit:
3 seconds
Memory limit: 1024 megabytes
Given n circles $c_{1}, c_{2}, \ldots, c_{n}$ on a flat Cartesian plane. We attempt to do the following:

1. Find the circle c_{i} with the largest radius. If there are multiple candidates all having the same (largest) radius, choose the one with the smallest index. (i.e. minimize i).
2. Remove c_{i} and all the circles intersecting with c_{i}. Two circles intersect if there exists a point included by both circles. A point is included by a circle if it is located in the circle or on the border of the circle.
3. Repeat 1 and 2 until there is no circle left.

We say c_{i} is eliminated by c_{j} if c_{j} is the chosen circle in the iteration where c_{i} is removed. For each circle, find out the circle by which it is eliminated.

Input

The first line contains an integer n, denoting the number of circles $\left(1 \leq n \leq 3 \cdot 10^{5}\right)$. Each of the next n lines contains three integers x_{i}, y_{i}, r_{i}, representing the x-coordinate, the y-coordinate, and the radius of the circle $c_{i}\left(-10^{9} \leq x_{i}, y_{i} \leq 10^{9}, 1 \leq r_{i} \leq 10^{9}\right)$.

Output

Output n integers $a_{1}, a_{2}, \ldots, a_{n}$ in the first line, where a_{i} means that c_{i} is eliminated by $c_{a_{i}}$.

Scoring

Subtask 1 (points: 7)
$n \leq 5000$
Subtask 2 (points: 12)
$n \leq 3 \cdot 10^{5}, y_{i}=0$ for all circles
Subtask 3 (points: 15)
$n \leq 3 \cdot 10^{5}$, every circle intersects with at most 1 other circle
Subtask 4 (points: 23)
$n \leq 3 \cdot 10^{5}$, all circles have the same radius.
Subtask 5 (points: 30)
$n \leq 10^{5}$
Subtask 6 (points: 13)
$n \leq 3 \cdot 10^{5}$

Example

input	output
11	72745677476
992	
1321	
1182	
332	
3121	
12141	
985	
282	
521	
1442	
14141	

Note

The picture in the statements illustrates the first example.

