
38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Problem J. Random Chess Game
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

This is an interactive problem.

One a boring Tuesday evening, Jack and Jill decided to play a game of chess. Since Jack is a very mediocre
chessplayer, Jill promised to play random moves on her turns. Formally, if on Jill’s turn, there are n legal
moves, then Jill will choose each move with probability 1/n. Also, Jill likes black color very much. So, she
played all games with black pieces. After losing several games, Jack asked you to write a program which
will help him to beat Jill’s random strategy.

Chess rules
This section is based on the Wikipedia article about chess.

Chess game pieces are divided into white and black sets. Each set consists of 16 pieces: one king, one
queen, two rooks, two bishops, two knights, and eight pawns. The game is played on a square board of
eight rows and eight columns. The 64 squares alternate in color and are referred to as light and dark
squares. The chessboard is placed with a light square at the right-hand corner nearest to each player.
Thus, each queen starts on a square of its own color (the white queen on a light square; the black queen
on a dark square).

White moves first, after which players alternate turns, moving one piece per turn (except for castling,
when two pieces are moved). A piece is moved to either an unoccupied square or one occupied by an
opponent’s piece, which is captured and removed from play. With the sole exception of en passant, all
pieces capture by moving to the square that the opponent’s piece occupies. Moving is compulsory, it is
illegal to skip a turn. A player may not make any move that would put or leave the player’s own king in
check. If the player to move has no legal move, the game is over; the result is either checkmate (a loss for
the player with no legal move) if the king is in check, or stalemate (a draw) if the king is not. Each piece
has its own way of moving:

• The king moves one square in any direction. The king also has a special move called castling that
involves also moving a rook.

• A rook can move any number of squares along a rank or file, but cannot leap over other pieces.
Along with the king, a rook is involved during the king’s castling move.

• A bishop can move any number of squares diagonally, but cannot leap over other pieces.

• The queen combines the power of a rook and bishop and can move any number of squares along a
rank, file, or diagonal, but cannot leap over other pieces.

• A knight moves to any of the closest squares that are not on the same rank, file, or diagonal. (Thus
the move forms an L-shape: two squares vertically and one square horizontally, or two squares
horizontally and one square vertically.) The knight is the only piece that can leap over other pieces.

• A pawn can move forward to the unoccupied square immediately in front of it on the same file, or on
its first move it can advance two squares along the same file, provided both squares are unoccupied.
A pawn can capture an opponent’s piece on a square diagonally in front of it on an adjacent file, by
moving to that square. A pawn has two special moves: the en passant capture and promotion.

Once in every game, each king can make a special move, known as castling. Castling consists of moving
the king two squares along the first rank toward a rook that is on the player’s first rank and then placing
the rook on the last square that the king just crossed. Castling is permissible if the following conditions
are met:

Problem J Developer: Anton Maydell Page 17 of 25



38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

• Neither the king nor the rook has previously moved during the game.

• There are no pieces between the king and the rook.

• The king cannot be in check, nor can the king pass through any square that is under attack by an
enemy piece, or move to a square that would result in check. (Note that castling is permitted if the
rook is under attack, or if the rook crosses an attacked square.)

When a pawn makes a two-step advance from its starting position and there is an opponent’s pawn on
a square next to the destination square on an adjacent file, then the opponent’s pawn can capture it en
passant (“in passing”), moving to the square the pawn passed over. This can be done only on the very
next turn; otherwise the right to do so is forfeited.

When a pawn advances to the eighth rank, as a part of the move it is promoted and must be exchanged
for the player’s choice of queen, rook, bishop, or knight of the same color. Usually, the pawn is chosen to
be promoted to a queen, but in some cases another piece is chosen; this is called underpromotion. There
is no restriction on the piece promoted to, so it is possible to have more pieces of the same type than at
the start of the game (for example, two or more queens).

When a king is under immediate attack by one or two of the opponent’s pieces, it is said to be in check.
A move in response to a check is legal only if it results in a position where the king is no longer in check.
This can involve capturing the checking piece; interposing a piece between the checking piece and the king
(which is possible only if the attacking piece is a queen, rook, or bishop and there is a square between it
and the king); or moving the king to a square where it is not under attack. Castling is not a permissible
response to a check.

The object of the game is to checkmate the opponent; this occurs when the opponent’s king is in check,
and there is no legal way to remove it from attack. It is never legal for a player to make a move that puts
or leaves the player’s own king in check.

There are several ways games can end in a draw:

• Stalemate: The player whose turn it is to move has no legal move and is not in check.

• Threefold repetition: This most commonly occurs when neither side is able to avoid repeating moves
without incurring a disadvantage. In this situation, either player can claim a draw. The three
occurrences of the position need not occur on consecutive moves for a claim to be valid. Two
positions are considered same or equal if all occupied squares and kind of pieces (not necessarily the
same piece) they occupy are the same, the castling rights for both sides did not change, and no en
passant capture was possible during the first occurrence, even if obviously not played.

• Fifty-move rule: If during the previous 50 moves (100 half-moves) no pawn has been moved and no
capture has been made, either player can claim a draw. A half-move is a turn by either White or
Black.

In this problem we assume that both players claim a draw whenever it is possible.

Standard Algebraic Notation (SAN)
This section is based on the Wikipedia article about algebraic notation in chess.

Each square of the chessboard is identified by a unique coordinate pair: a letter and a number. The vertical
columns of squares, called files, are labeled a through h from White’s left (the queenside) to right (the
kingside). The horizontal rows of squares, called ranks, are numbered 1 to 8 starting from White’s side of
the board. Thus each square has a unique identification of file letter followed by rank number.

Each piece type (other than pawns) is identified by an uppercase letter (K for king, Q for queen, R for rook,
B for bishop, and N for knight). Pawns are not identified by uppercase letters, but rather by the absence
of one. Distinguishing between pawns is not necessary for recording moves, since only one pawn can move
to a given square.

Problem J Developer: Anton Maydell Page 18 of 25



38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Each move of a piece is indicated by the piece’s uppercase letter, plus the coordinate of the destination
square. For example, Qg4 (move a queen to g4 ). For pawn moves, a letter indicating pawn is not used,
only the destination square is given. For example, e4 (move a pawn to e4 ).

When a piece makes a capture, an x is inserted immediately before the destination square. For example,
Bxa6 (bishop captures the piece on a6 ). When a pawn makes a capture, the file from which the pawn
departed is used to identify the pawn. For example, fxe7 (pawn on the f -file captures the piece on e7 ).
En passant captures are indicated by specifying the capturing pawn’s file of departure, the x, and the
destination square (not the square of the captured pawn). For example, exf6 (pawn on the e-file captures
the pawn on f5 ).

When two (or more) identical pieces can move to the same square, the moving piece is uniquely identified
by specifying the piece’s letter, followed by (in descending order of preference):

1. the file of departure (if they differ), for example, Nbc3,

2. the rank of departure (if the files are the same but the ranks differ),

3. both the file and rank (if neither alone is sufficient to identify the piece, which occurs only in rare
cases where one or more pawns have promoted, resulting in a player having three or more identical
pieces able to reach the same square).

As above, an x can be inserted to indicate a capture. For example, N1xc3 (white knight on b1 captures
black piece on c3 when another white knight is located on b5 ).

When a pawn moves to the last rank and promotes, an equals sign and the piece promoted to is indicated
at the end of the move notation, for example: h8=R (promoting to rook).

Castling is indicated by the special notations O-O (for kingside castling) and O-O-O (queenside castling).
Note that uppercase letter O is used.

A move that places the opponent’s king in check has the character + appended. If check is also a mate
then the character + is replaced by the character #.

Interaction Protocol
Each line of input describes one input command. Each command consists of command type and command
argument separated by a colon and a single space. There are three different types of input commands:

black_move: <last-black-move>
white_moves: <move-list>
result: <verdict>

The game starts with a white_moves command listing the initially possible moves: <move-list> is a
space-separated list of legal white moves in some order.

On each turn, your program should choose one legal move for White from the given move-list and output
it on a single line.

After that, if the game has ended after your program’s move, the result command is sent. Otherwise,
a black_move command is sent describing the Black move (recall that it is chosen uniformly at random
from all legal moves).

After that, if the game has ended after the Black move, the result command is sent. Otherwise, a
white_moves command is sent again, listing all currently available moves in some order, and then it is
your program’s turn again.

Your program should terminate after receiving the result command. There are six different types of
verdict (game termination status):

<verdict> result <verdict> result
White won by checkmate OK Illegal move PE
Game drawn by stalemate WA Game drawn by repetition WA
Game drawn by fifty-move rule WA Black won by checkmate WA

Problem J Developer: Anton Maydell Page 19 of 25



38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

After printing each line, flush the output buffer, or you will get the outcome Idleness Limit Exceeded:
this can be done by calling, for example, fflush (stdout) in C or C++, System.out.flush () in Java,
or sys.stdout.flush () in Python.

There are 150 different tests. In each test, the initial state of pseudorandom generator used to generate
the moves is fixed in advance. Test 1 corresponds to the example.

Example
standard input standard output

white_moves: a3 a4 b3 b4 c3 c4 d3 d4 e3 e4 f3 f4 g3 g4 h3 h4 Nh3 Na3 Nc3

←Nf3

black_move: c5

white_moves: a3 a4 b3 b4 c3 c4 d3 d4 f3 f4 g3 g4 h3 h4 e5 Bc4 Nc3 Ba6 Qh5

←Nf3 Ke2 Na3 Bb5 Qe2 Ne2 Nh3 Bd3 Be2 Qf3 Qg4

black_move: Na6

white_moves: a3 a4 b3 b4 c3 c4 d3 d4 f3 f4 g3 g4 h3 h4 e6 Bc4 Nc3 Bxa6 Qh5

←Nf3 Ke2 Na3 Bb5 Qe2 Ne2 Nh3 Bd3 Be2 Qf3 Qg4

black_move: g5

white_moves: a3 a4 b3 b4 c3 c4 d3 d4 f3 f4 g3 g4 h3 h4 e6 Bc4 Nc3 Qh5 Be2

←Ke2 Na3 Bb5 Kf1 Qe2 Ne2 Nh3 Bd3 Bf1 Bxb7 Nf3 Qf3 Qg4

black_move: f5

white_moves: a3 a4 b3 b4 c3 c4 d3 d4 f3 f4 g3 h3 h4 e6 exf6 Nc3 Qa4 Qd4

←Qe2 Ne2 Qf3 Qb4 Qxg5 Na3 Qf4 Qc4 Kf1 Qd1 Qg3 Qh5# Qxf5 Bb5 Qe4 Bd3 Qh4 Bf1

←Be2 Qh3 Ke2 Nh3 Kd1 Bxb7 Nf3 Bc4

black_move: b5

white_moves: a3 a4 b3 b4 c3 c4 d3 d4 f3 f4 g3 h3 h4 fxe7 f7+ Nc3 Qa4 Qd4

←Qe2 Ne2 Qf3 Qb4 Qxg5 Na3 Qf4 Qc4 Kf1 Qe6 Qd1 Qg3 Qh5# Qf5 Bxb5 Qe4 Qxd7+

←Qh4 Bxc8 Qh3 Ke2 Nh3 Kd1 Bb7 Nf3

black_move: Rb8

white_moves: a3 a4 b3 b4 c3 c4 d3 d4 f3 f4 g3 h3 h4 fxe7 f7+ O-O Nbc3 Nec3

←Qa4 Qd4 Nd4 Qf3 Qb4 Rg1 Qxg5 Na3 Qf4 Qc4 Kf1 Ng1 Qe6 Qg3 Qh5# Qf5 Bxb5 Ng3

←Qe4 Rf1 Qxd7+ Qh4 Bxc8 Qh3 Nf4 Kd1 Bb7

result: White won by checkmate

e4

e5

Bxa6

Qg4

exf6

Ne2

Qh5#

The “←” characters and blank lines were inserted into example to enhance readability. Real input doesn’t
contain such characters, and there are no empty lines in the input.

Problem J Developer: Anton Maydell Page 20 of 25



38th Petrozavodsk Programming Camp, Winter 2020
Day 1: SPb SU Contest, Tuesday, January 28, 2020

Explanation
In the example above, you could see an en passant capture (5. exf6). Also, on white move 7, there are
examples of disambiguating moves (Nbc3 and Nec3) and castling move (O-O).

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0ZPZ0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNAQJBMR

a b c d e f g h

8 rmblkans
7 opZpopop
6 0Z0Z0Z0Z
5 Z0o0Z0Z0
4 0Z0ZPZ0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNAQJBMR

a b c d e f g h

8 rmblkans
7 opZpopop
6 0Z0Z0Z0Z
5 Z0o0O0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNAQJBMR

a b c d e f g h

1. e4 1... c5 2. e5 2... Na6

8 rZblkans
7 opZpopop
6 nZ0Z0Z0Z
5 Z0o0O0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNAQJBMR

a b c d e f g h

8 rZblkans
7 opZpopop
6 BZ0Z0Z0Z
5 Z0o0O0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNAQJ0MR

a b c d e f g h

8 rZblkans
7 opZpopZp
6 BZ0Z0Z0Z
5 Z0o0O0o0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNAQJ0MR

a b c d e f g h

8 rZblkans
7 opZpopZp
6 BZ0Z0Z0Z
5 Z0o0O0o0
4 0Z0Z0ZQZ
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNA0J0MR

a b c d e f g h

3. Bxa6 3... g5 4. Qg4 4... f5

8 rZblkans
7 opZpo0Zp
6 BZ0Z0Z0Z
5 Z0o0Opo0
4 0Z0Z0ZQZ
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNA0J0MR

a b c d e f g h

8 rZblkans
7 opZpo0Zp
6 BZ0Z0O0Z
5 Z0o0Z0o0
4 0Z0Z0ZQZ
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNA0J0MR

a b c d e f g h

8 rZblkans
7 o0Zpo0Zp
6 BZ0Z0O0Z
5 Zpo0Z0o0
4 0Z0Z0ZQZ
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNA0J0MR

a b c d e f g h

8 rZblkans
7 o0Zpo0Zp
6 BZ0Z0O0Z
5 Zpo0Z0o0
4 0Z0Z0ZQZ
3 Z0Z0Z0Z0
2 POPONOPO
1 SNA0J0ZR

a b c d e f g h

5. exf6 5... b5 6. Ne2 6...Rb8

8 0sblkans
7 o0Zpo0Zp
6 BZ0Z0O0Z
5 Zpo0Z0o0
4 0Z0Z0ZQZ
3 Z0Z0Z0Z0
2 POPONOPO
1 SNA0J0ZR

a b c d e f g h

8 0sblkans
7 o0Zpo0Zp
6 BZ0Z0O0Z
5 Zpo0Z0oQ
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPONOPO
1 SNA0J0ZR

a b c d e f g h

7. Qh5#

Problem J Developer: Anton Maydell Page 21 of 25


