Problem I. Lyndon Substring

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
256 mebibytes

A string w is said to be a Lyndon word if w is lexicographically smaller than any of its cyclic rotations.
The longest Lyndon substring of a string s is the longest substring of s which is a Lyndon word.
Chiaki has n strings $s_{1}, s_{2}, \ldots, s_{n}$. She has some queries: for some pair (i, j), find the length of the longest Lyndon substring of string $s_{i} s_{j}$.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains two integers n and $m\left(1 \leq n, m \leq 10^{5}\right)$ - the number of strings and the number of queries.
Each of the next n lines contains a nonempty string $s_{i}\left(1 \leq s_{i} \leq 10^{5}\right)$ consisting of lowercase English letters.
Each of the next m lines contains two integers i and $j(1 \leq i, j \leq n)$ denoting a query.
It is guaranteed that in one test case the sum of all $|s|$ does not exceed 5×10^{5} and that in all cases the sum of all $|s|$ does not exceed 5×10^{6}.
It is guaranteed that neither the sum of all n nor the sum of all m exceeds 10^{6}.

Output

For each query, output an integer denoting the answer.

Example

	standard input	standard output
1		4
2	1	
aa		
12		

